

TECHNICAL SUPPORT DOCUMENT

Air Discharge Permit ADP 23-3615 Air Discharge Permit Application CL-3253

Issued: November 29, 2023

Vancouver Bulk Terminal

SWCAA ID - 1920

Prepared By: Wess Safford Air Quality Engineer Southwest Clean Air Agency

TABLE OF CONTENTS

<u>Sectio</u>	<u>n</u>	Page
1.	Facility Identification	1
2.	Facility Description	1
3.	Current Permitting Action	1
4.	Process Description	1
5.	Equipment/Activity Identification	2
6.	Emissions Determination	4
7.	Regulations and Emission Standards	7
8.	RACT/BACT/BART/LAER/PSD/CAM Determinations	8
9.	Ambient Impact Analysis	9
10.	Discussion of Approval Conditions	9
11.	Start-up and Shutdown Provisions/Alternative Operating Scenarios/Pollution Prevention	10
12.	Emission Monitoring and Testing	10
13.	Facility History	11
14.	Public Involvement Opportunity	11

ABBREVIATIONS

List of Acronyms

ADP	Air Discharge Permit	NSPS	New Source Performance Standard
AP-42	Compilation of Emission Factors, AP-	PSD	Prevention of Significant
	42, 5th Edition, Volume 1, Stationary		Deterioration
	Point and Area Sources – published	RCW	Revised Code of Washington
	by EPA	SCC	Source Classification Code
ASIL	Acceptable Source Impact Level	SDS	Safety Data Sheet
BACT	Best available control technology	SQER	Small Quantity Emission Rate listed
CAM	Compliance Assurance Monitoring		in WAC 173-460
CAS#	Chemical Abstracts Service registry	Standard	Standard conditions at a temperature
	number		of 68°F (20°C) and a pressure of
CFR	Code of Federal Regulations		29.92 in Hg (760 mm Hg)
EPA	U.S. Environmental Protection	SWCAA	Southwest Clean Air Agency
	Agency	T-BACT	Best Available Control Technology
EU	Emission Unit		for toxic air pollutants
mfr	Manufacturer	WAC	Washington Administrative Code
NOV	Notice of Violation/		

List of Units and Measures

$\mu g/m^3$	Micrograms per cubic meter	ppmv	Parts per million by volume
μm	Micrometer (10^{-6} meter)	ppmvd	Parts per million by volume, dry
acfm	Actual cubic foot per minute	ppmw	Parts per million by weight
dscfm	Dry Standard cubic foot per minute	scfm	Standard cubic foot per minute
gr/dscf	Grain per dry standard cubic foot	tph	Ton per hour
MMBtu	Million British thermal unit	tpy	Tons per year
MMcf	Million cubic feet		
ppm	Parts per million		

List of Chemical Symbols, Formulas, and Pollutants

CO	Carbon monoxide	PM	Particulate Matter with an
CO_2	Carbon dioxide		aerodynamic diameter 100 µm or less
CO ₂ e	Carbon dioxide equivalent	PM_{10}	PM with an aerodynamic diameter
HAP	Hazardous air pollutant listed pursuant		10 µm or less
	to Section 112 of the Federal Clean	PM _{2.5}	PM with an aerodynamic diameter
	Air Act		2.5 μm or less
N_2O	Nitrous oxide	SO_2	Sulfur dioxide
NH ₃	Ammonia	SO _x	Sulfur oxides
NO_2	Nitrogen dioxide	TAP	Toxic air pollutant pursuant to
NO _x	Nitrogen oxides		Chapter 173-460 WAC
O_2	Oxygen	VOC	Volatile organic compound
O_3	Ozone		_

Terms not otherwise defined have the meaning assigned to them in the referenced regulations or the dictionary definition, as appropriate.

1. FACILITY IDENTIFICATION

Applicant Name: Applicant Address:	Vancouver Bulk Terminal 2701 NW Harborside Drive, Vancouver, WA 98660
Facility Name: Facility Address:	Vancouver Bulk Terminal 2735 NW Harborside Drive, Vancouver, WA 98660
SWCAA Identification:	1920
Contact Person:	Jeff Robinson, Director of Operations
Primary Process: SIC/NAICS Code:	Bulk Commodities Handling 4491 / Marine Cargo Handling 488310 / Port and Harbor Operations
Facility Classification:	Natural Minor

2. FACILITY DESCRIPTION

Vancouver Bulk Terminal (Vancouver Bulk) operates a operates a trans-loading facility for bulk materials at the Port of Vancouver (Terminal 2, Berth 7). The facility receives material by rail and truck. The facility ships material by marine vessel. The facility primarily handles ore concentrates and clay, but has occasionally handled products such as beet pellets, mill scale and tire chips.

3. CURRENT PERMITTING ACTION

This permitting action is in response to Air Discharge Permit application number CL-3253 (ADP Application CL-3253) dated September 19, 2023. Vancouver Bulk Terminal submitted ADP Application CL-3253 requesting approval of the following:

• Handling and storage of silver (lead) concentrate.

The current permitting action provides approval for the proposed new material. ADP 23-3615 supersedes ADP 17-3233 in its entirety.

4. PROCESS DESCRIPTION

4.a. <u>Bulk Material Handling and Storage (*existing*).</u> This facility receives, stores and ships varies bulk commodities at Terminal 2 of the Port of Vancouver. Bulk material is received by railcar or truck and shipped by marine vessel. Bulk material may be stored in either enclosed buildings or open storage.

5. EQUIPMENT/ACTIVITY IDENTIFICATION

5.a. <u>Baghouse 1 (DC-1) / Railcar Unloading (*existing*).</u> This dust collector is used in conjunction with partial building enclosure to control emissions from railcar receiving operations.

Mfg / Model:	Airlanco / 169AST10-III
Blower:	Industrial Air model BCHS 372
Rated Airflow:	17,000 acfm
Filtration Area / Media:	2,772 ft ²
Filter Bags:	169 filter bags, each 10' x 6.0" dia
Cleaning System:	Reverse pulse jet
Exhaust Configuration:	27" x 24" discharging vertical at ~10.6' above grade
Location:	45°38'25.3"N 122°42'13.6"W
SCC Code:	30510498

5.b. <u>Baghouse 2 (DC-2) / Clay Storage Conveyors (*existing*).</u> This dust collector is used in conjunction with building enclosure to control emissions from conveyor transfer points inside the Clay Storage Building.

Mfg / Model:	MAC / 144MCF494
Rated Airflow:	48,000 acfm
Filtration Area / Media:	7,163 ft^2
Filter Bags:	144 filter bags
Cleaning System:	Reverse pulse jet
Exhaust Configuration:	3.5' x 4' discharging horizontal at 6' above grade
Location:	45°38'24.4"N 122°42'14.2"W
SCC Code:	30504670

5.c. <u>Baghouse 3 (DC-3) / Reclaim Conveyors (*existing*).</u> This dust collector is used in conjunction with partial enclosure to control emissions from material transfer between Conveyors R1 and R2.

Mfg / Model:	MAC / 96ABS64
Blower:	Zurn-Clarage model 217XL
Rated Airflow:	4,650 acfm
Filtration Area / Media:	788 ft ²
Filter Bags:	64 filter bags, each 8' x 5.875"
Cleaning System:	Reverse pulse jet
Exhaust Configuration:	12" x 16" discharging horizontal at 60' above grade
Location:	45°38'12.6"N 122°42'23.5"W
SCC Code:	30510598

5.d. <u>Baghouse 4 (DC-4) / Reclaim Conveyor (*existing*).</u> This dust collector is used in conjunction with partial enclosure to control emissions from Conveyor R3.

MAC / 96ABS36
Zurn-Clarage model 213XL
2,550 acfm
443 ft^2
36 filter bags, each 8' x 5.875"
Reverse pulse jet
12" x 16" discharging horizontal at 45' above grade
45°38'12.9"N 122°42'23.6"W
30510598

5.e. <u>Baghouse 5 (DC-5) / Reclaim Conveyor and Ship Loader (*existing*).</u> This dust collector is used to control emissions from the head chute of Conveyor R4 and the ship loader spout.

Mfg / Model·	Fabric Filters Air Systems / 132-10
Blower:	Twin-City model #M/N 245
Rated Airflow:	12,500 acfm
Filtration Area / Media:	2,072 ft ²
Filter Bags:	132 filter bags, each 10' x 6"
Cleaning System:	Reverse pulse jet
Exhaust Configuration:	12" x 16" discharging horizontal at 45' above grade
Location:	45°38'12.3"N 122°42'23.7"W
SCC Code:	30510598

5.f. <u>Baghouse 6 (DC-6) / Clay Storage Building (*existing*).</u> This dust collector is used to control emissions from material transfer between Conveyors BC-2 and U2 and other points along Conveyor U2.

Mfg / Model:	Airlanco / 36AST10-III1 (s/n 80402543-0001)
Blower:	Industrial Air model BCHS 187
Rated Airflow:	3,000 acfm
Filtration Area / Media:	590 ft ²
Filter Bags:	36 filter bags, each 10' x 6.0" dia
Cleaning System:	Reverse pulse jet
Exhaust Configuration:	11" x 14" discharging vertical at ~7.5' above grade
Location:	45°38'24.3"N 122°42'14.2"W
SCC Code:	30504670

5.g. <u>Baghouse 7 (DC-7) / Ore Reclaim (*existing*).</u> This dust collector is used in conjunction with building enclosure to control emissions from ore reclaim operations in the Ore Storage Building.

Mfg / Model:	Fabric Filters Air Systems / 12-1M-8
Rated Airflow:	2,500 acfm (practical max - 1,750 acfm)
Filtration Area / Media:	336 ft ²
Filter Bags:	12 filters, each 40" x 6.0" dia
Cleaning System:	Reverse pulse jet
Exhaust Configuration:	12" x 14" discharging horizontal at 14' above grade
Location:	45°38'23.0"N 122°42'14.4"W
SCC Code:	30510598

5.h. <u>Ore Storage Building (*existing*).</u> One bulk storage building is used to store and transfer bulk copper ore. Fugitive emissions are controlled with enclosure and a dust collector.

Location:	45°38'19.7"N 122°42'15.4"W
SCC Code:	30510598

5.i. <u>Ship Loading (*existing*).</u> Two ship loading spouts are used to load bulk material into ship holds. One spout is retractable and is dedicated to loading bentonite clay and similar products. The clay spout is fitted with a "hula skirt" particulate control device to minimize fugitive emissions. The second spout is non-retractable, equipped with a product deflector unit, and dedicated to loading ore concentrates. The ore spout has no emission controls.

Location:	45°38'11.1"N 122°42'24.3"W
SCC Code:	30504670

- 5.j. <u>Other Equipment:</u> Receiving conveyors BC-1, BC-2, U-2, U-3 Ore building conveyors K-1, K-2, K-3, K-4 Clay railcar unloading building
- Clay storage building Open storage area Reclaim conveyors R-1, R-2, R-3, R-4

5.k. Equipment/Activity Summary.

ID No.	Equipment/Activity	Control Equipment/Measure	
1	Baghouse 1 / Railcar Unloading (Airlanco - 17,000 acfm)	Process Enclosure, Powered Filtration	
2	Baghouse 2 / Clay Storage Conveyors (MAC - 48,000 acfm)	Process Enclosure, Powered Filtration	
3	Baghouse 3 / Reclaim Conveyors (MAC - 4,650 acfm)	Process Enclosure, Powered Filtration	
4	Baghouse 4 / Reclaim Conveyor (MAC - 2,550 acfm)	Process Enclosure, Powered Filtration	
5	Baghouse 5 / Reclaim Conveyor & Ship Loader (FFAS - 12,500 acfm)	Process Enclosure, Powered Filtration	
6	Baghouse 6 / Clay Storage Building (Airlanco - 3,000 acfm)	Process Enclosure, Powered Filtration	
7	Baghouse 7 / Ore Reclaim (FFAS - 1,750 acfm)	Process Enclosure, Powered Filtration	
8	Ore Storage Building	Process Enclosure	
9	Ship Loading	Process Enclosure, Powered Filtration	

6. EMISSIONS DETERMINATION

Emissions to the ambient atmosphere from bulk material handling and storage operations, as proposed in ADP Application CL-3253, consist of particulate matter (PM), toxic air pollutants (TAPs), and hazardous air pollutants (HAPs).

Unless otherwise specified by SWCAA, actual emissions must be determined using the specified input parameter listed for each emission unit and the following hierarchy of methodologies:

- (a) Continuous emissions monitoring system (CEMS) data;
- (b) Source emissions test data (EPA reference method). When source emissions test data conflicts with CEMS data for the time period of a source test, source test data must be used;
- (c) Source emissions test data (other test method); and
- (d) Emission factors or methodology provided in this TSD.

6.a. <u>Material Handling and storage (*modified*).</u> Potential particulate matter emissions from material handling and storage operations are calculated using Equation 1 from EPA AP-42 Section 13.2.4 "Aggregate Handling and Storage Piles" (11/06) and the estimated overall emission control efficiency of the material handling system. HAP and TAP emissions are calculated based on calculated particulate matter emissions and material weight percentage. Annual emissions will be calculated from actual material throughput using the same methodology.

Pollutant	Emissions
PM	2.50 tpy
PM_{10}	1.25 tpy
PM _{2.5}	0.18 tpy
Arsenic	4.2019 lb/yr
Cadmium	0.5031 lb/yr
Chlorine	500.0 lb/yr
Chromium (metal)	175.0 lb/yr
Chromium (VI)	0.00044 lb/yr
Cobalt	0.00010 lb/yr
Copper	361.5 lb/yr
Lead	104.94 lb/yr
Manganese	175.0 lb/yr
Mercury	0.00022 lb/yr
Molybdenum	1,750 lb/yr
Nickel	0.00015 lb/yr
Silica, Crystalline	0.37 lb/yr
Silver	175.0 lb/yr

<u>ADP Application CL-3253.</u> Vancouver Bulk has not requested an increase in overall PM emissions concurrent with this permitting action. Emission limits for chemical constituents affected by this permitting action will be increased to reflect proposed emissions. Emission limits for chemical constituents not affected by this permitting action will be carried forward unchanged from ADP 17-3233.

Emissions from material handling and storage are calculated in accordance with the following equations:

PM Emissions (lbs)	=	E _{PM} * T * (1-CF)	
PM ₁₀ Emissions (lbs)	=	E _{PM10} * T * (1-CI	٦)
PM _{2.5} Emissions (lbs)) =	$E_{PM2.5} * T * (1-C)$	F)
Where: E = T = CF =	AP-42 en Material Control	mission factor equa throughput (tons) efficiency of trans	ation with applicable particle size constant fer point (<i>see Section 6.b below</i>).
E = 0.0032 * k * [(1)]	U/5) ^{1.3} / (N	1/2) ^{1.4}] lb/ton	EPA AP-42, Section 13.2.4 - Equation 1
Wheney E	Emissian	. fo oton non tuon of o	

Where:	E = Emissions factor per transfer point (lb/ton)
	K = Particle size constant (PM - 0.74, PM10 - 0.35, PM2.5 - 0.053)
	U = Mean wind speed (miles/hour)
	M = Material moisture content (%)

6.b. <u>Material Handling System Control Efficiency</u>. The estimated emission control efficiency of each transfer point of the material handling system is as follows:

Material Transfer Point	Control Efficiency
Railcar to dump hopper	99%
Dump hopper to conveyor BC-1	99%
Railcar to excavator hopper	95%
Excavator hopper to conveyor BC-1	99%
Conveyor BC-1 to conveyor BC-2	99%
Conveyor BC-2 to conveyor U-2	98%
Conveyor U-2 to conveyor U-3	98%
Conveyor U-3 to clay building	98%
Conveyor U-2 to conveyor K-1	98%
Conveyor K-1 to conveyor K-2	98%
Conveyor K-2 to conveyor K-3	98%
Conveyor K-3 to conveyor K-4	98%
Conveyor K-4 to conveyor ore building	98%
Frontend loader to O-1 Hopper	50%
O-1 hopper to conveyor O-1	80%
Conveyor O-1 to conveyor R-1	80%
Conveyor U-2 to conveyor R-1	98%
Clay reclaim to conveyor R-1	98%
Ore reclaim to conveyor R-1	98%
Conveyor R-1 to conveyor R-2	95%
Conveyor R-2 to conveyor R-3	95%
Conveyor R-3 to conveyor R-4	95%
Conveyor R-4 to shiploader	95%
Shiploader to ship hold	80%

6.c. <u>Emissions Summary/Facility-wide Potential to Emit.</u> Facility-wide potential to emit as calculated in the sections above is summarized below.

Pollutant	Potential Emissions (tpy)	Project Increase (tpy)
NO _X	0.00	0.00
CO	0.00	0.00
VOC	0.00	0.00
SO_2	0.00	0.00
Pb	0.052	0.0025
PM	2.50	0.00
PM ₁₀	1.25	0.00
PM _{2.5}	0.18	0.00
TAP	0.48	0.0026
HAP	1.62	0.0026
CO_2e	0.0	0.0

Pollutant	CAS Number	Category	Facility-wide Emissions	Project Increase	WAC 173-460 SQER
			<u>lb/yr</u>	<u>lb/yr</u>	<u>lb/yr</u>
Arsenic	7440-38-2	HAP/ TAP	4.2019	0.0019	0.049
Cadmium	7440-43-9	HAP/ TAP	0.5031	0.0031	0.039
Chromium (VI)	18540-29-9	HAP/ TAP	4.4E-4	4.4E-4	6.5E-4
Lead	7439-92-1	HAP/ TAP	104.94	4.94	14
Molybdenum	7439-98-7	TAP	1,750	0.0	5,250
Nickel	7440-02-0	HAP/ TAP	1.5E-4	1.5E-4	0.62
Silver	7440-22-4	TAP	175.0	0.0	175
			<u>lb/yr</u>	<u>lb/24-hr</u>	<u>lb/24-hr</u>
Chlorine	7782-50-5	HAP/ TAP	500.0	0.0	0.011
Chromium (metal)	7440-47-3	HAP/ TAP	175.0	0.0	0.37
Cobalt	7440-48-4	HAP/TAP	0.00010	2.01E-5	0.0074
Manganese	7439-96-5	HAP/ TAP	175.0	0.0	0.022
Mercury	7439-97-6	HAP/TAP	0.00022	4.15E-5	0.0022
Silica, Crystalline	7631-86-9	TAP	0.37	0.071	0.22
			lb/vr	lb/hr	lb/hr
Copper	7440-50-8	TAP	361.5	0.0	0.19

7. REGULATIONS AND EMISSION STANDARDS

Regulations that have been used to evaluate the acceptability of the proposed facility and establish emission limits and control requirements include, but are not limited to, the regulations, codes, or requirements listed below.

- 7.a. <u>Revised Code of Washington (RCW) 70A.15.2040</u> empowers any activated air pollution control authority to prepare and develop a comprehensive plan or plans for the prevention, abatement and control of air pollution within its jurisdiction. An air pollution control authority may issue such orders as may be necessary to effectuate the purposes of the Washington Clean Air Act and enforce the same by all appropriate administrative and judicial proceedings subject to the rights of appeal as provided in Chapter 62, Laws of 1970 ex. sess.
- 7.b. <u>RCW 70A.15.2210</u> provides for the inclusion of conditions of operation as are reasonably necessary to assure the maintenance of compliance with the applicable ordinances, resolutions, rules and regulations when issuing an Air Discharge Permit for installation and establishment of an air contaminant source.
- 7.c. <u>WAC 173-460 "Controls for New Sources of Toxic Air Pollutants"</u> requires Best Available Control Technology for toxic air pollutants (T-BACT), identification and quantification of emissions of toxic air pollutants and demonstration of protection of human health and safety.
- 7.d. <u>WAC 173-476 "Ambient Air Quality Standards"</u> establishes ambient air quality standards for PM_{10} , $PM_{2.5}$, lead, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide in the ambient air, which shall not be exceeded.

- 7.e. <u>SWCAA 400-040 "General Standards for Maximum Emissions"</u> requires all new and existing sources and emission units to meet certain performance standards with respect to Reasonably Available Control Technology (RACT), visible emissions, fallout, fugitive emissions, odors, emissions detrimental to persons or property, sulfur dioxide, concealment and masking, and fugitive dust.
- 7.f. <u>SWCAA 400-050 "Emission Standards for Combustion and Incineration Units"</u> requires that all provisions of SWCAA 400-040 be met and that no person shall cause or permit the emission of particulate matter from any combustion or incineration unit in excess of 0.23 grams per dry cubic meter (0.1 grains per dry standard cubic foot) of exhaust gas at standard conditions.
- 7.g. <u>SWCAA 400-060 "Emission Standards for General Process Units"</u> prohibits particulate matter emissions from all new and existing process units in excess of 0.1 grains per dry standard cubic foot of exhaust gas.
- 7.h. <u>SWCAA 400-109 "Air Discharge Permit Applications"</u> requires that an Air Discharge Permit application be submitted for all new installations, modifications, changes, or alterations to process and emission control equipment consistent with the definition of "new source". Sources wishing to modify existing permit terms may submit an Air Discharge Permit application to request such changes. An Air Discharge Permit must be issued, or written confirmation of exempt status must be received, before beginning any actual construction, or implementing any other modification, change, or alteration of existing equipment, processes, or permits.
- 7.i. <u>SWCAA 400-110 "New Source Review"</u> requires that SWCAA issue an Air Discharge Permit in response to an Air Discharge Permit application prior to establishment of the new source, emission unit, or modification.
- 7.j. <u>SWCAA 400-111 "Requirements for Sources in a Maintenance Plan Area"</u> requires that no approval to construct or alter an air contaminant source shall be granted unless it is evidenced that:
 - (1) The equipment or technology is designed and will be installed to operate without causing a violation of the applicable emission standards;
 - (2) Emissions will be minimized to the extent that the new source will not exceed emission levels or other requirements provided in the maintenance plan;
 - (3) Best Available Control Technology will be employed for all air contaminants to be emitted by the proposed equipment;
 - (4) The proposed equipment will not cause any ambient air quality standard to be exceeded; and
 - (5) If the proposed equipment or facility will emit any toxic air pollutant regulated under WAC 173-460, the proposed equipment and control measures will meet all the requirements of that Chapter.

8. RACT/BACT/BART/LAER/PSD/CAM DETERMINATIONS

The proposed equipment and control systems incorporate Best Available Control Technology (BACT) for the types and amounts of air contaminants emitted by the processes as described below:

New BACT Determinations

8.a. <u>BACT Determination – Bulk Material Handling and Storage.</u> The proposed use of process enclosure and high efficiency filtration has been determined to meet the requirements of BACT for the type and quantity of emissions from bulk material handling and storage operations at this facility.

Previous BACT Determinations

8.b. <u>BACT Determination - Railcar Receiving Operations (*ADP 17-3233*). The proposed use of process enclosure and high efficiency filtration was previously determined to meet the requirements of BACT for particulate matter emissions from railcar receiving operations at this facility.</u>

Other Determinations

- 8.c. <u>Prevention of Significant Deterioration (PSD) Applicability Determination.</u> The potential to emit of this facility is less than applicable PSD applicability thresholds. Likewise, this permitting action will not result in a potential increase in emissions equal to or greater than the PSD thresholds. Therefore, PSD review is not applicable to this action.
- 8.d. <u>Compliance Assurance Monitoring (CAM) Applicability Determination</u>. CAM is not applicable to any emission unit at this facility because it is not a major source and is not required to obtain a Part 70 permit.

9. AMBIENT IMPACT ANALYSIS

9.a. <u>TAP Small Quantity Review.</u> The incremental increases in TAP emissions associated with this permitting action are quantified in Section 6 of this Technical Support Document. All incremental increases in individual TAP emissions are less than the applicable small quantity emission rate (SQER) identified in WAC 173-460.

Conclusions

- 9.b. Handling of silver (lead) concentrate, as proposed in ADP Application CL-3253, will not cause the ambient air quality requirements of Title 40 Code of Federal Regulations (CFR) Part 50 "National Primary and Secondary Ambient Air Quality Standards" to be violated.
- 9.c. Handling of silver (lead) concentrate, as proposed in ADP Application CL-3253, will not cause the requirements of WAC 173-460 "Controls for New Sources of Toxic Air Pollutants" or WAC 173-476 "Ambient Air Quality Standards" to be violated.
- 9.d. Handling of silver (lead) concentrate, as proposed in ADP Application CL-3253, will not cause a violation of emission standards for sources as established under SWCAA General Regulations Sections 400-040 "General Standards for Maximum Emissions," 400-050 "Emission Standards for Combustion and Incineration Units," and 400-060 "Emission Standards for General Process Units."

10. DISCUSSION OF APPROVAL CONDITIONS

SWCAA has made a determination to issue ADP 23-3615 in response to ADP Application CL-3253. ADP 23-3615 contains approval requirements deemed necessary to assure compliance with applicable regulations and emission standards as discussed below.

- 10.a. <u>Supersession of Previous Permits.</u> ADP 23-3615 supersedes ADP 17-3233 in its entirety.
- 10.b. <u>General Basis</u>. Permit requirements for equipment affected by this permitting action incorporate the operating schemes proposed by the applicant in ADP Application CL-3253. Permit requirements established by this action are intended to implement BACT, minimize emissions, and assure compliance with applicable requirements on a continuous basis. Emission limits for approved equipment are based on the maximum potential emissions calculated in Section 6 of this Technical Support Document.
- 10.c. <u>Monitoring and Recordkeeping Requirements.</u> ADP 23-3615 establishes monitoring and recordkeeping requirements sufficient to document compliance with applicable emission limits, ensure proper operation of approved equipment and provide for compliance with generally applicable requirements. Specific requirements are established for material throughput, baghouse operation, and ship loading.

- 10.d. <u>Reporting Requirements.</u> ADP 23-3615 establishes general reporting requirements for annual air emissions, upset conditions and excess emissions. Specific reporting requirements are established for material throughput and ship loading. Reports are to be submitted on an annual basis.
- 10.e. <u>Emission Limits.</u> Consistent with ADP Application CL-3253, the scope of this permitting action is limited to the handling of a new material (silver concentrate). Existing particulate matter emission limits have been maintained. Emission limits for individual chemical constituents affected by this permitting action have been increased to reflect proposed operations.
- 10.f. <u>Requirements for Unmodified Emission Units.</u> Permit requirements for existing emission units not affected by ADP Application CL-3253 are carried forward unchanged from ADP 17-3233.

11. START-UP AND SHUTDOWN/ALTERNATIVE OPERATING SCENARIOS/POLLUTION PREVENTION

11.a. <u>Start-up and Shutdown Provisions.</u> Pursuant to SWCAA 400-081 "Start-up and Shutdown", technology based emission standards and control technology determinations shall take into consideration the physical and operational ability of a source to comply with the applicable standards during start-up or shutdown. Where it is determined that a source is not capable of achieving continuous compliance with an emission standard during start-up or shutdown, SWCAA shall include appropriate emission limitations, operating parameters, or other criteria to regulate performance of the source during start-up or shutdown.

The applicant did not identify any start-up and shutdown periods during which affected equipment is not capable of achieving continuous compliance with applicable technology determinations or approval conditions. To SWCAA's knowledge, this facility can comply with all applicable standards during startup and shutdown.

- 11.b. <u>Alternate Operating Scenarios.</u> SWCAA conducted a review of alternate operating scenarios applicable to equipment affected by this permitting action. The permittee did not propose or identify any applicable alternate operating scenarios. Therefore, none were included in the permit requirements.
- 11.c. <u>Pollution Prevention Measures.</u> SWCAA conducted a review of possible pollution prevention measures for the facility. No pollution prevention measures were identified by either the permittee or SWCAA separate or in addition to those measures required under BACT considerations. Therefore, none were included in the permit requirements.

12. EMISSION MONITORING AND TESTING

- 12.a. <u>Emission Testing Baghouse 1 (DC-1).</u> Permit requirements for Baghouse 1 require the permittee to conduct periodic emission testing every five years for the purposes of demonstrating compliance with applicable emission limits. All emission testing shall be conducted in accordance with the provisions of ADP 23-3615, Appendix A.
- 12.b. <u>Emission Testing Baghouse 6 (DC-6).</u> Permit requirements for Baghouse 6 require the permittee to conduct periodic emission testing every ten years for the purposes of demonstrating compliance with applicable emission limits. All emission testing shall be conducted in accordance with the provisions of ADP 23-3615, Appendix A.

13. FACILITY HISTORY

13.a. <u>Previous Permitting Actions.</u> SWCAA has previously issued the following Permits for this facility:

Permit <u>Number</u>	Application <u>Number</u>	Date	Purpose
17-3233	CL-3009	6/14/2017	Replacement of the existing rail unloading building and 2 existing baghouses with a new unloading building and 2 new baghouses to accommodate a rail realignment project at the Port of Vancouver.
97-1988	CL-1286	4/3/1997	Installation of new bulk commodity storage building (Ore Building) and associated handling equipment. Superseded by ADP 17-3233.
96-1895R1	CL-1271	1/3/1997	Installation of material handling equipment and emission control baghouses at Port of Vancouver, Terminal 2, Berth 7. Superseded by ADP 17-3233.
96-1895	CL-1137	7/17/1996	Installation of material handling equipment and emission control baghouses at Port of Vancouver, Terminal 2, Berth 7. Superseded by ADP 96-1895R1.

13.b. <u>Compliance History.</u> A search of source records on file at SWCAA did not identify any outstanding compliance issues during the past five years.

14. PUBLIC INVOLVEMENT OPPORTUNITY

- 14.a. <u>Public Notice for ADP Application CL-3253</u>. Public notice for ADP Application CL-3253 was published on the SWCAA internet website for a minimum of (15) days beginning on October 4, 2023.
- 14.b. <u>Public/Applicant Comment for ADP Application CL-3253.</u> SWCAA did not receive specific comments, a comment period request or any other inquiry from the public regarding this ADP application. Therefore no public comment period was provided for this permitting action.
- 14.c. <u>State Environmental Policy Act.</u> The Port of Vancouver issued a Supplemental Mitigated Determination of Non-Significance for bulk material handling and storage operations at this facility on April 28, 2009. Operations at the facility subsequent to the permit modifications proposed in ADP Application CL-3253 will not be substantially different than the scope of operations reviewed in the Mitigated DNS. Therefore a separate review has not been conducted for this permitting action.