

# **TECHNICAL SUPPORT DOCUMENT**

Air Discharge Permit ADP 22-3504 ADP Application CL-3182

Issued: March 8, 2022

Wickum Weld SWCAA ID - 2727

Prepared By: Wess Safford Air Quality Engineer Southwest Clean Air Agency

# TABLE OF CONTENTS

| Section | <u>1</u>                                                                              | Page |
|---------|---------------------------------------------------------------------------------------|------|
| 1.      | Facility Identification                                                               | 1    |
| 2.      | Facility Description                                                                  | 1    |
| 3.      | Current Permitting Action                                                             | 1    |
| 4.      | Process Description                                                                   | 1    |
| 5.      | Equipment/Activity Identification                                                     | 1    |
| 6.      | Emissions Determination                                                               | 2    |
| 7.      | Regulations and Emission Standards                                                    | 5    |
| 8.      | RACT/BACT/BART/LAER/PSD/CAM Determinations                                            | 6    |
| 9.      | Ambient Impact Analysis                                                               | 7    |
| 10.     | Discussion of Approval Conditions                                                     | 7    |
| 11.     | Start-up and Shutdown Provisions/Alternative Operating Scenarios/Pollution Prevention | 8    |
| 12.     | Emission Monitoring and Testing                                                       | 8    |
| 13.     | Facility History                                                                      | 8    |
| 14.     | Public Involvement Opportunity                                                        | 9    |

# **Abbreviations**

| acfm              | actual cubic feet per minute                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------|
| ADP               | Air Discharge Permit                                                                                     |
| AP-42             | Compilation of Emission Factors, AP-42, Fifth Edition, Volume 1, Stationary Point and Area Sources -     |
|                   | published by the US Environmental Protection Agency                                                      |
| ASHRAE            | American Society of Heating, Refrigerating, and Air-Conditioning Engineers                               |
| BACT              | Best available control technology                                                                        |
| Btu               | British thermal unit                                                                                     |
| CAS #             | Chemical Abstracts Service registry number                                                               |
| cfm               | Cubic feet per minute                                                                                    |
| CPM               | Condensable particulate matter                                                                           |
| CFR               | Code of Federal Regulations                                                                              |
| CO                | Carbon monoxide                                                                                          |
| $CO_2e$           | Carbon dioxide equivalent                                                                                |
| dscfm             | Dry standard cubic feet per minute                                                                       |
| EPA               | U.S. Environmental Protection Agency                                                                     |
| GWP               | Global warming potential                                                                                 |
| HAP               | Hazardous air pollutant listed pursuant to Section 112 of the Federal Clean Air Act                      |
| lb/hr             | Pounds per hour                                                                                          |
| lb/MMBtu          | Pounds per million British thermal units                                                                 |
| lb/yr             | Pounds per year                                                                                          |
| MĚRV              | Minimum Efficiency Reporting Value – a measure of particulate matter filter effectiveness                |
| MMBtu             | Millions of British thermal units                                                                        |
| MMBtu/hr          | Millions of British thermal units per hour                                                               |
| SDS               | Safety Data Sheet                                                                                        |
| SQER              | Small Quantity Emission Rate listed in WAC 173-460 (as in effect August 21, 1998)                        |
| NO <sub>X</sub>   | Nitrogen oxides                                                                                          |
| PM                | Total particulate matter (includes both filterable and condensable particulate matter as measured by EPA |
|                   | Methods 5 and 202)                                                                                       |
| $PM_{10}$         | Particulate matter with an aerodynamic diameter less than or equal to 10 micrometers (includes both      |
|                   | filterable and condensable particulate matter as measured by EPA Methods 5 and 202)                      |
| PM <sub>2.5</sub> | Particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers (includes both     |
|                   | filterable and condensable particulate matter as measured by EPA Methods 5 and 202)                      |
| ppm               | Parts per million                                                                                        |
| ppmv              | Parts per million by volume                                                                              |
| ppmvd             | Parts per million by volume, dry                                                                         |
| PSD               | Prevention of Significant Deterioration                                                                  |
| RCW               | Revised Code of Washington                                                                               |
| SQER              | Small Quantity Emission Rate listed in WAC 173-460                                                       |
| $SO_2$            | Sulfur dioxide                                                                                           |
| SWCAA             | Southwest Clean Air Agency                                                                               |
| TAP               | Toxic air pollutant pursuant to Chapter 173-460 WAC                                                      |
| T-BACT            | Best Available Control Technology for toxic air pollutants                                               |
| tpy               | Tons per year                                                                                            |
| VOC               | Volatile organic compound                                                                                |
| WAC               | Washington Administrative Code                                                                           |

## **1. FACILITY IDENTIFICATION**

| Applicant Name:          | Wickum Weld, Inc.                                  |
|--------------------------|----------------------------------------------------|
| Applicant Address:       | 2100 Kotobuki Way                                  |
|                          | Vancouver, WA 98660                                |
| Facility Name:           | Wickum Weld                                        |
| Facility Address:        | 2100 Kotobuki Way                                  |
|                          | Vancouver, WA 98660                                |
| SWCAA Identification:    | 2727                                               |
| Contact Person:          | Jarrod Wickum, President                           |
| Primary Process:         | Metal Fabrication and Powder Coating               |
| SIC/NAICS Code:          | 3479: Metal Coating, Engraving and Allied Services |
| Facility Classification: | Natural Minor                                      |

### 2. FACILITY DESCRIPTION

The Wickum Weld facility designs and manufactures a variety of aluminum truck accessories.

### **3. CURRENT PERMITTING ACTION**

This permitting action is in response to Air Discharge Permit application number CL-3182 (ADP Application CL-3182) dated April 27, 2021. Wickum Weld Inc. submitted ADP Application CL-3182 requesting approval of the following:

• Installation of a new powder coating line consisting of a staging area, an unvented powder booth, and a curing oven.

The current permitting action provides approval for the new powder coating line as proposed in ADP Application CL-3182. This action also incorporates existing welding operations into the permit.

This is the initial permitting action for this facility.

### 4. PROCESS DESCRIPTION

- 4.a <u>Metal Fabrication/Welding (*existing*).</u> Wickum Weld fabricates custom designed truck accessories from aluminum stock. Raw stock is cut, formed, and welded to produce a final product.
- 4.b <u>Powder Coating (*new*).</u> A portion of Wickum Weld's production is finished with a powder coating. Components to be powder coated are cleaned, coated, and cured in successive stages. A single natural gas fired oven is used to temper components and cure powder coatings.

### 5. EQUIPMENT/ACTIVITY IDENTIFICATION

5.a <u>Metal Fabrication/Welding (*existing*).</u> A variety of metal working activities are performed in the fabrication portion of the facility. The primary source of air contaminant emissions is TIG welding. Emissions from these operations are contained inside the building envelope and not directly vented to atmosphere.

5.b <u>Powder Coat Booth (*new*).</u> One enclosure work booth is used to apply powder coating to components. The unit is described as follows:

| Make / Model:        | Rohner / CM6000                                     |
|----------------------|-----------------------------------------------------|
| Dimensions:          | 7' h x 8' w x 8' 1                                  |
| Rated exhaust flow:  | 6000 acfm                                           |
| Filters:             | Primary – (6) 14" x 26"                             |
|                      | Secondary – (4) 24" x 24" rated at 99.9% efficiency |
| Exhaust description: | None - vents inside building                        |

5.c <u>Powder Coat Oven (*new*).</u> One natural gas fired oven is used to temper components and cure applied powder coating. The unit is described as follows:

| Make / Model:            | Rohner / Class A (s/n R2018366)                         |
|--------------------------|---------------------------------------------------------|
| Length * width * height: | 11'2" x 8'6" x 13'                                      |
| Rated exhaust flow:      | 800 acfm                                                |
| Exhaust description:     | 14" diameter stack, vertical at ~26' above ground level |

| Oven Burner.      |                                                               |
|-------------------|---------------------------------------------------------------|
| Make / Model:     | Midco International / HMA 2                                   |
| Rated Heat Input: | 0.999 MMBtu/hr                                                |
| Fuel:             | Natural gas                                                   |
| Emissions:        | 100 ppmv NO <sub>X</sub> / 50 ppmv CO – corrected to 3% $O_2$ |

### 5.d <u>Equipment/Activity Summary.</u>

| ID<br>No. | Equipment/Activity                            | Control Equipment/Measure                     |
|-----------|-----------------------------------------------|-----------------------------------------------|
| 1         | Metal Fabrication/Welding                     | Building Enclosure                            |
| 2         | Powder Coat Booth<br>(Rohner – 6,000 acfm)    | Process Enclosure, High Efficiency Filtration |
| 3         | Powder Coat Oven<br>(Rohner – 0.999 MMBtu/hr) | Low Sulfur Fuel (Nat Gas)                     |

# 6. EMISSIONS DETERMINATION

Emissions to the ambient atmosphere from fabrication operations proposed in ADP Application CL-3182 consist of nitrogen oxides ( $NO_x$ ), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter (PM) sulfur dioxide ( $SO_2$ ), toxic air pollutants (TAPs), and hazardous air pollutants (HAPs).

Unless otherwise specified by SWCAA, actual emissions must be determined using the specified input parameter listed for each emission unit and the following hierarchy of methodologies:

- (a) Continuous emissions monitoring system (CEMS) data;
- (b) Source emissions test data (EPA reference method). When source emissions test data conflicts with CEMS data for the time period of a source test, source test data must be used;
- (c) Source emissions test data (other test method); and
- (d) Emission factors or methodology provided in this TSD.

6.a <u>Welding Operations (*existing*).</u> Potential emissions from welding operations are calculated from aluminum weld wire throughput of 2,000 lb/yr, a 50% capture/control efficiency, and emission factors from "Characterizing Shipyard Welding Emissions and Associated Control Options" - August 1995. The capture/control efficiency is attributed to building enclosure.

Annual emissions must be calculated from actual weld wire throughput using the same methodology unless an alternative approach is approved in writing by SWCAA.

| Aluminum Welding - 5356 Wire           |               |            |           |                                       |  |  |        |
|----------------------------------------|---------------|------------|-----------|---------------------------------------|--|--|--------|
| Wire Throughput = 2000                 |               | lb/yr      |           |                                       |  |  |        |
| Control Efficiency = 0.5               |               |            |           |                                       |  |  |        |
|                                        |               | EF         | Emissions |                                       |  |  |        |
| Pollutant                              | lb/lb rod     | lb/1000 lb | lb/yr     | Emission Factor Source                |  |  |        |
| PM/PM <sub>10</sub> /PM <sub>2.5</sub> |               | 72.3       | 72.3      | See Footnote                          |  |  |        |
| Aluminum                               | 0.9           | 24.705     | 24.7      | Average % found in an MSDS * metal EF |  |  | tal EF |
| Copper                                 | 0.0025        | 0.069      | 0.1       | Average % found in an MSDS * metal EF |  |  |        |
| Manganese 0.01                         |               | 0.275      | 0.3       | Average % found in an MSDS * metal EF |  |  | tal EF |
| Magnesium 0.03                         |               | 0.824      | 0.8       | Average % found in an MSDS * metal EF |  |  | tal EF |
| * 72.3 lb fume and 27.45               | me / 1,000 lb | wire       |           |                                       |  |  |        |
|                                        |               |            |           |                                       |  |  |        |

6.b <u>Powder Coat Booth (*new*).</u> Powder coats are solid powders with no inherent VOC content. However, some VOC emissions are expected during the curing process due to thermal degradation of the material. Potential VOC emissions are estimated to be 5% of coating weight as referenced in the Emission Inventory Improvement Program document "Preferred and Alternative Methods for Estimating Air Emissions From Surface Coating Operation", July 2001. HAP and TAP emissions are calculated using material balance methodology. PM emissions are calculated assuming a 70% transfer efficiency and 98% capture/control efficiency (process enclosure, filtration). PM is assumed to be 78% PM<sub>2.5</sub>.

Annual emissions must be calculated from actual powder coat throughput using the same methodology unless an alternative approach is approved in writing by SWCAA.

| Powder Coating Emissions                                                                             |                              |                      |                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------|----------------------|----------------------------------------------|--|--|--|--|
| Annual Usage =<br>Annual Operation =<br>Transfer Efficiency =<br>Capture and Filtration Efficiency = | 2,400<br>2,080<br>70%<br>98% | lbs of powe<br>hr/yr | ler coat                                     |  |  |  |  |
|                                                                                                      | Emisions                     | Emissions            | Emission Factor                              |  |  |  |  |
| Pollutant                                                                                            | lb/hr                        | lb/yr                | Source                                       |  |  |  |  |
| VOCs (emitted from curing oven)                                                                      | 0.06                         | 120                  | 5% by weight volatilized (EIIP Vol II, 7/01) |  |  |  |  |
| PM                                                                                                   | 0.007                        | 14.4                 | Material Balance                             |  |  |  |  |
| $PM_{10}$                                                                                            | 0.007                        | 14.4                 | Material Balance                             |  |  |  |  |
| PM <sub>2.5</sub>                                                                                    | 0.005                        | 11.2                 | Material Balance                             |  |  |  |  |
| Carbon Black                                                                                         | 0.00007                      | 0.14                 | Material Balance                             |  |  |  |  |

6.c <u>Powder Coat Oven (*new*).</u> Potential emissions from oven operation are calculated from a rated heat input of 0.999 MMBtu/hr, 8,760 hr/yr, and applicable emission factors. Emission factors for NO<sub>X</sub> and CO correspond to 100 ppmv and 50 ppmv at 3% O<sub>2</sub>, respectively. All other emission factors are taken from EPA AP-42 §1.4 "Natural Gas Combustion" (3/98). All PM is assumed to be PM<sub>2.5</sub>.

Annual emissions must be calculated from actual fuel consumption using the same methodology unless new emission factors are developed through emission testing and approved by SWCAA.

| Heat Input Rating =                | 0.999           | MMBtu/hr |           |         |                               |
|------------------------------------|-----------------|----------|-----------|---------|-------------------------------|
| Fuel Consumption =                 | 8,751           | MMBtu/yr |           |         |                               |
|                                    |                 |          |           |         |                               |
|                                    | Emission Factor |          | Emissions |         |                               |
| Pollutant                          | (lb/MMBtu)      | (lb/hr)  | (lb/yr)   | (tpy)   | <b>Emission Factor Source</b> |
| NO <sub>X</sub>                    | 0.1214          | 0.12     | 1,062     | 0.53    | Midco International           |
| CO                                 | 0.0369          | 0.037    | 323       | 0.16    | Midco International           |
| VOC                                | 0.0054          | 0.005    | 47        | 0.024   | AP-42 Sec. 1.4 (7/98)         |
| SO <sub>X</sub> as SO <sub>2</sub> | 5.88E-04        | 5.9E-04  | 5         | 0.0026  | AP-42 Sec. 1.4 (7/98)         |
| PM                                 | 0.0075          | 0.0074   | 65        | 0.033   | AP-42 Sec. 1.4 (7/98)         |
| $PM_{10}$                          | 0.0075          | 0.0074   | 65        | 0.033   | AP-42 Sec. 1.4 (7/98)         |
| PM <sub>2.5</sub>                  | 0.0075          | 0.0074   | 65        | 0.033   | AP-42 Sec. 1.4 (7/98)         |
| Benzene                            | 2.06E-06        | 2.1E-06  | 1.8E-02   | 9.0E-06 | AP-42 Sec. 1.4 (7/98)         |
| Formaldehyde                       | 7.35E-05        | 7.3E-05  | 6.4E-01   | 3.2E-04 | AP-42 Sec. 1.4 (7/98)         |
|                                    |                 |          |           |         |                               |
| $CO_2e$                            | 117.1           | 117.0    | 1,024,753 | 512     | 40 CFR 98                     |

6.d <u>Emissions Summary/Facility-wide Potential to Emit.</u> Facility-wide potential to emit as calculated in the sections above is summarized below.

| Pollutant Potential Emissions (tpy) | Project Increase (tpy) |
|-------------------------------------|------------------------|
| NO <sub>X</sub> 0.53                | 0.53                   |
| CO 0.16                             | 0.16                   |
| VOC 0.02                            | 0.02                   |
| SO <sub>2</sub> 0.003               | 0.003                  |
| Lead 0.0                            | 0.0                    |
| PM 0.08                             | 0.08                   |
| $PM_{10}$ 0.08                      | 0.08                   |
| PM <sub>2.5</sub> 0.07              | 0.07                   |
| TAP 0.013                           | 0.013                  |
| HAP 0.001                           | 0.001                  |
| CO <sub>2</sub> e 512               | 512                    |

| Pollutant    | CAS<br>Number | Category  | Facility-wide<br>Emissions (lb/yr) | Project<br>Increase (lb/yr) | WAC 173-460<br>SQER (lb/yr) |
|--------------|---------------|-----------|------------------------------------|-----------------------------|-----------------------------|
| Aluminum     | 7429-90-5     | TAP B     | 24.7                               | 0.0                         | 5,250                       |
| Benzene      | 71-43-2       | HAP/TAP A | 0.02                               | 0.0                         | 20                          |
| Carbon Black | 1333-86-4     | HAP/TAP B | 0.1                                | 0.1                         | 1,750                       |

| Pollutant    | CAS<br>Number | Category    | Facility-wide<br>Emissions (lb/yr) | Project<br>Increase (lb/yr) | WAC 173-460<br>SQER (lb/yr) |
|--------------|---------------|-------------|------------------------------------|-----------------------------|-----------------------------|
| Copper       | 7440-50-8     | TAP B       | 0.07                               | 0.0                         | 175                         |
| Formaldehyde | 50-00-0       | HAP/TAP A   | 0.6                                | 0.0                         | 20                          |
| Manganese    | 7439-96-5     | HAP / TAP B | 0.3                                | 0.0                         | 175                         |

## 7. REGULATIONS AND EMISSION STANDARDS

Regulations that have been used to evaluate the acceptability of the proposed facility and establish emission limits and control requirements include, but are not limited to, the regulations, codes, or requirements listed below.

- 7.a <u>40 CFR 63 subpart HHHHHH (63.11169 et seq.) "National Emission Standards for Hazardous Air Pollutants: Paint</u> <u>Stripping and Miscellaneous Surface Coating Operations at Area Sources"</u> establishes standards and work practices for all area sources engaged in paint stripping operations using methylene chloride, autobody refinishing operations, or spray coating of metal or plastic parts with coatings that contain chromium, lead, manganese, nickel, or cadmium (target HAPs). The powder coatings in use at this facility do not contain any target HAPs and are not "spray applied" as the term is used in this regulations; therefore this regulation does not apply to this facility.
- 7.b <u>40 CFR 63.11514 et seq. (Subpart XXXXX) "National Emissions Standards for Hazardous Air Pollutants Area</u> <u>Source Standards for Nine Metal Fabrication and Finishing Source Categories"</u> establishes standards and work practices for dry abrasive blasting, machining, dry grinding and polishing, spray painting, and welding operations at area sources primarily engaged in one of nine selected metal fabrication and finishing source categories. The proposed facility is not primarily engaged in any of the selected metal fabrication and finishing source categories so this regulation is not applicable.
- 7.c Revised Code of Washington (RCW) 70A.15.2040 empowers any activated air pollution control authority to prepare and develop a comprehensive plan or plans for the prevention, abatement and control of air pollution within its jurisdiction. An air pollution control authority may issue such orders as may be necessary to effectuate the purposes of the Washington Clean Air Act and enforce the same by all appropriate administrative and judicial proceedings subject to the rights of appeal as provided in Chapter 62, Laws of 1970 ex. sess.
- 7.d <u>RCW 70A.15.2210</u> provides for the inclusion of conditions of operation as are reasonably necessary to assure the maintenance of compliance with the applicable ordinances, resolutions, rules and regulations when issuing an Air Discharge Permit for installation and establishment of an air contaminant source.
- 7.e <u>WAC 173-460 "Controls for New Sources of Toxic Air Pollutants"</u> requires Best Available Control Technology for toxic air pollutants (T-BACT), identification and quantification of emissions of toxic air pollutants and demonstration of protection of human health and safety. SWCAA implements WAC 173-460 as in effect on August 21, 1998.
- 7.f <u>WAC 173-476 "Ambient Air Quality Standards"</u> establishes ambient air quality standards for  $PM_{10}$ ,  $PM_{2.5}$ , lead, sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide in the ambient air, which shall not be exceeded.
- 7.g <u>SWCAA 400-040 "General Standards for Maximum Emissions"</u> requires all new and existing sources and emission units to meet certain performance standards with respect to Reasonably Available Control Technology (RACT), visible emissions, fallout, fugitive emissions, odors, emissions detrimental to persons or property, sulfur dioxide, concealment and masking, and fugitive dust.
- 7.h <u>SWCAA 400-050 "Emission Standards for Combustion and Incineration Units"</u> requires that all provisions of SWCAA 400-040 be met and that no person shall cause or permit the emission of particulate matter from any

combustion or incineration unit in excess of 0.23 grams per dry cubic meter (0.1 grains per dry standard cubic foot) of exhaust gas at standard conditions.

- 7.i <u>SWCAA 400-060 "Emission Standards for General Process Units"</u> prohibits particulate matter emissions from all new and existing process units in excess of 0.1 grains per dry standard cubic foot of exhaust gas.
- 7.j <u>SWCAA 400-109 "Air Discharge Permit Applications"</u> requires that an Air Discharge Permit application be submitted for all new installations, modifications, changes, or alterations to process and emission control equipment consistent with the definition of "new source". Sources wishing to modify existing permit terms may submit an Air Discharge Permit application to request such changes. An Air Discharge Permit must be issued, or written confirmation of exempt status must be received, before beginning any actual construction, or implementing any other modification, change, or alteration of existing equipment, processes, or permits.
- 7.k <u>SWCAA 400-110 "New Source Review"</u> requires that SWCAA issue an Air Discharge Permit in response to an Air Discharge Permit application prior to establishment of the new source, emission unit, or modification.
- 7.1 <u>SWCAA 400-111 "Requirements for Sources in a Maintenance Plan Area"</u> requires that no approval to construct or alter an air contaminant source shall be granted unless it is evidenced that:
  - (1) The equipment or technology is designed and will be installed to operate without causing a violation of the applicable emission standards;
  - (2) Emissions will be minimized to the extent that the new source will not exceed emission levels or other requirements provided in the maintenance plan;
  - (3) Best Available Control Technology will be employed for all air contaminants to be emitted by the proposed equipment;
  - (4) The proposed equipment will not cause any ambient air quality standard to be exceeded; and
  - (5) If the proposed equipment or facility will emit any toxic air pollutant regulated under WAC 173-460, the proposed equipment and control measures will meet all the requirements of that Chapter.

# 8. RACT/BACT/BART/LAER/PSD/CAM DETERMINATIONS

The proposed equipment and control systems incorporate Best Available Control Technology (BACT) for the types and amounts of air contaminants emitted by the processes as described below:

New BACT Determinations

- 8.a <u>BACT Determination Welding Operations.</u> The proposed use of building enclosure has been determined to meet the requirements of BACT and T-BACT for the type and quantity of pollutants emitted by welding operations at this facility.
- 8.b <u>BACT Determination Powder Coat Booth.</u> The proposed use of booth enclosure and discharge inside the building envelope has been determined to meet the requirements of BACT and T-BACT for the type and quantity of pollutants emitted by powder coating operations at this facility.
- 8.c <u>BACT Determination Powder Coat Oven.</u> The proposed use of low sulfur fuel (natural gas), annual emission monitoring, and proper combustion controls has been determined to meet the requirements of BACT and T-BACT for the type and quantity of pollutants emitted by the curing oven at this facility.

# Previous BACT Determinations

None.

## Other Determinations

- 8.d <u>Prevention of Significant Deterioration (PSD) Applicability Determination:</u> The potential to emit of this facility is less than applicable PSD applicability thresholds. Likewise, this permitting action will not result in a potential increase in emissions equal to or greater than the PSD thresholds. Therefore, PSD review is not applicable to this action.
- 8.e <u>Compliance Assurance Monitoring (CAM) Applicability Determination</u>. CAM is not applicable to any emission unit at this facility because it is not a major source and is not required to obtain a Part 70 permit.

## 9. AMBIENT IMPACT ANALYSIS

9.a <u>TAP Small Quantity Review.</u> The incremental increases in TAP emissions associated with this permitting action are quantified in Section 6 of this Technical Support Document. All incremental increases in individual TAP emissions are less than the applicable small quantity emission rate (SQER) identified in WAC 173-460 (effective 8/21/98).

#### Conclusions

- 9.b Installation of a powder coating operation, as proposed in ADP Application CL-3182, will not cause the ambient air quality requirements of Title 40 Code of Federal Regulations (CFR) Part 50 "National Primary and Secondary Ambient Air Quality Standards" to be violated.
- 9.c Installation of a powder coating operation, as proposed in ADP Application CL-3182, will not cause the requirements of WAC 173-460 "Controls for New Sources of Toxic Air Pollutants" (as in effect 8/21/98) or WAC 173-476 "Ambient Air Quality Standards" to be violated.
- 9.d Installation of a powder coating operation, as proposed in ADP Application CL-3182, will not cause a violation of emission standards for sources as established under SWCAA General Regulations Sections 400-040 "General Standards for Maximum Emissions," 400-050 "Emission Standards for Combustion and Incineration Units," and 400-060 "Emission Standards for General Process Units."

# **10. DISCUSSION OF APPROVAL CONDITIONS**

SWCAA has made a determination to issue ADP 22-3504 in response to ADP Application CL-3182. ADP 22-3504 contains approval requirements deemed necessary to assure compliance with applicable regulations and emission standards as discussed below.

- 10.a <u>General Basis</u>. Permit requirements for equipment affected by this permitting action incorporate the operating schemes proposed by the applicant in ADP Application CL-3182. Permit requirements established by this action are intended to implement BACT, minimize emissions, and assure compliance with applicable requirements on a continuous basis. Emission limits for approved equipment are based on the maximum potential emissions calculated in Section 6 of this Technical Support Document.
- 10.b <u>Monitoring and Recordkeeping Requirements.</u> ADP 22-3504 establishes monitoring and recordkeeping requirements sufficient to document compliance with applicable emission limits, ensure proper operation of approved equipment and provide for compliance with generally applicable requirements. Specific recordkeeping requirements are established for fuel consumption, material throughput, and maintenance activities that may affect emissions from permitted equipment.

- 10.c <u>Reporting Requirements.</u> ADP 22-3504 establishes general reporting requirements for annual air emissions, upset conditions and excess emissions. Specific reporting requirements are established for fuel consumption and material throughput. Reports are to be submitted on an annual basis.
- 10.d <u>Emission Limits.</u> Process emissions from the Powder Coat Booth and Powder Coat Oven can be impacted by how those emission units are operated. Emissions from each unit were limited to the calculated potential to emit based on proper operation and maintenance. An emission limit for VOC emissions from curing of powder coatings was not established because these emissions are relatively small and cannot be impacted by how the activity is conducted. Other than a visual emission limit, short-term emission limits were not established for the curing oven because potential emissions from the unit are too small to warrant periodic source testing or performance monitoring.

## 11. START-UP AND SHUTDOWN/ALTERNATIVE OPERATING SCENARIOS/POLLUTION PREVENTION

11.a <u>Start-up and Shutdown Provisions.</u> Pursuant to SWCAA 400-081 "Start-up and Shutdown", technology based emission standards and control technology determinations shall take into consideration the physical and operational ability of a source to comply with the applicable standards during start-up or shutdown. Where it is determined that a source is not capable of achieving continuous compliance with an emission standard during start-up or shutdown, SWCAA shall include appropriate emission limitations, operating parameters, or other criteria to regulate performance of the source during start-up or shutdown.

The applicant did not identify any start-up and shutdown periods during which affected equipment is not capable of achieving continuous compliance with applicable technology determinations or approval conditions. To SWCAA's knowledge, this facility can comply with all applicable standards during startup and shutdown.

- 11.b <u>Alternate Operating Scenarios.</u> SWCAA conducted a review of alternate operating scenarios applicable to equipment affected by this permitting action. The permittee did not propose or identify any applicable alternate operating scenarios. Therefore, none were included in the permit requirements.
- 11.c <u>Pollution Prevention Measures.</u> SWCAA conducted a review of possible pollution prevention measures for the facility. No pollution prevention measures were identified by either the permittee or SWCAA separate or in addition to those measures required under BACT considerations. Therefore, none were included in the permit requirements.

### **12. EMISSION MONITORING AND TESTING**

There are no formal emission monitoring or testing requirements for this facility. Emission monitoring and testing would be most applicable to the Curing Oven. However, potential emissions from the Curing Oven are relatively small and the burner does not rely on low emission technology to achieve the emission limits, so periodic emission monitoring or testing was not required.

# **13. FACILITY HISTORY**

- 13.a <u>Previous Permitting Actions.</u> SWCAA has not previously issued any Permits for this facility.
- 13.b <u>Compliance History</u>. A search of source records on file at SWCAA did not identify any outstanding compliance issues at this facility.

## 14. PUBLIC INVOLVEMENT OPPORTUNITY

- 14.a <u>Public Notice for ADP Application CL-3182</u>. Public notice for ADP Application CL-3182 was published on the SWCAA internet website for a minimum of (15) days beginning on February 4, 2022.
- 14.b <u>Public/Applicant Comment for ADP Application CL-3182.</u> SWCAA did not receive specific comments, a comment period request or any other inquiry from the public regarding this ADP application. Therefore no public comment period was provided for this permitting action.
- 14.c <u>State Environmental Policy Act.</u> A complete SEPA checklist was submitted by Wickum Weld Inc. in conjunction with ADP Application CL-3182. After reviewing the checklist, SWCAA has made a Determination of Non Significance (DNS 22-003) concurrent with issuance of ADP 22-3504.