

TECHNICAL SUPPORT DOCUMENT

Air Discharge Permit 21-3471 Air Discharge Permit Application CL-3167

> BNSF Railway Company SWCAA ID - 228

Final Date: July 20, 2021

Prepared By: Danny Phipps Air Quality Engineer Southwest Clean Air Agency

TABLE OF CONTENTS

1.	FACILITY IDENTIFICATION	1
2.	FACILITY DESCRIPTION	1
3.	CURRENT PERMITTING ACTION	1
4.	PROCESS DESCRIPTION	1
5.	EQUIPMENT/ACTIVITY IDENTIFICATION	2
6.	EMISSIONS DETERMINATION	7
7.	REGULATIONS AND EMISSION STANDARDS	.14
8.	RACT/BACT/BART/LAER/PSD/CAM DETERMINATIONS	.18
9.	AMBIENT IMPACT ANALYSIS	.19
10.	DISCUSSION OF APPROVAL CONDITIONS	.20
11.	START-UP AND SHUTDOWN/ALTERNATIVE OPERATING SCENARIOS/POLLUTION PREVENTION	.21
12.	EMISSION MONITORING AND TESTING	.21
13.	FACILITY HISTORY	.21
14.	PUBLIC INVOLVEMENT OPPORTUNITY	.22

ABBREVIATIONS

List of Acronyms

ADP Air Discharge Permit	NESHAP National Emission Standards for
AP-42 Compilation of Emission Factors,	Hazardous Air Pollutants
AP-42, 5th Edition, Volume 1,	NOV Notice of Violation/
Stationary Point and Area Sources –	NSPS New Source Performance Standard
published by EPA	NWN Northwest Pipeline, North
ASIL Acceptable Source Impact Level	PSD Prevention of Significant
BACT Best available control technology	Deterioration
BARTBest Available Retrofit Technology	PTE Potential to Emit
BNSFBurlington Northern Santa Fe Railway Company	RACTReasonably Available Control Technology
CAM Compliance Assurance Monitoring	RCWRevised Code of Washington
CAS# Chemical Abstracts Service registry number	RICEReciprocating Internal Combustion Engine
CFR Code of Federal Regulations	SCC Source Classification Code
CI Compression Ignition	SDSSafety Data Sheet
EPAU.S. Environmental Protection Agency	SQER Small Quantity Emission Rate listed in WAC 173-460
EU Emission Unit	Standard Standard conditions at a
GWPGlobal Warming Potential	temperature of 68°F (20°C) and a
ICE Internal Combustion Engine	pressure of 29.92 in Hg (760 mm
LAER Lowest achievable emission rate	Hg)
MACT Maximum Achievable Control	SWCAA Southwest Clean Air Agency
Technologies	T-BACT Best Available Control Technology
mfr Manufacturer	for toxic air pollutants
	WAC Washington Administrative Code

List of Units and Measures

μg/m ³	Micrograms per cubic meter	MMBtu	Million British thermal unit
μm	Micrometer (10 ⁻⁶ meter)	MMcf	Million cubic feet
acfm	Actual cubic foot per minute	ppm	Parts per million
bhp	Brake horsepower	ppmv	Parts per million by volume
dscfm	Dry Standard cubic foot per minute	ppmvd	Parts per million by volume, dry Parts per million by weight
g/Nm ³ dry	Grams per Normal (i.e. Standard) cubic meter, dry	psig	Pounds per square inch, gauge Revolution per minute
gr/dscf	Grain per dry standard cubic foot	scf	Standard cubic foot
hp	Horsepower	scfm	Standard cubic foot per minute
hp-hrkW	Horsepower-hour Kilowatt	tpy	Tons per year

C ₃ H ₈ Propane	O ₃ Ozone
CH4Methane	PMParticulate Matter with an
CO Carbon monoxide	aerodynamic diameter 100 μm
CO ₂ Carbon dioxide	PM_{10} PM with an aerodynamic
CO ₂ e	diameter 10 μ m or less
H ₂ SHydrogen sulfide HAPHazardous air pollutant listed	PM _{2.5} PM with an aerodynamic diameter 2.5 μm or less
Federal Clean Air Act	SO ₂ Sulfur dioxide
HCl Hydrochloric acid	SO _x Sulfur oxides
HgMercury	TAP Toxic air pollutant pursuant to
N ₂ ONitrous oxide	Chapter 173-460 WAC
NH3 Ammonia	TGOC Total Gaseous Organic Carbon
NO ₂ Nitrogen dioxide	TOC Total Organic Carbon
NO _x Nitrogen oxides	TSP Total Suspended Particulate
O ₂ Oxygen	VOC Volatile organic compound

List of Chemical Symbols, Formulas, and Pollutants

Terms not otherwise defined have the meaning assigned to them in the referenced regulations or the dictionary definition, as appropriate.

1. FACILITY IDENTIFICATION

Applicant Name: Applicant Address:	BNSF Railway Company 605 Puyallup Avenue, Tacoma, WA 98421
Facility Name: Facility Address:	BNSF Railway Company 1310 W 11 th St, Vancouver, WA 98660
Contact Person:	Ryan Hibbs, Senior Manager Environmental Operations
SWCAA Identification:	0228
Primary Process: SIC/NAICS Code:	BNSF is a railroad transportation company 4011: Line-haul Operating Railroads 482111: Line haul railroads
Facility Classification:	Natural Minor

2. FACILITY DESCRIPTION

BNSF Railway Company (BSNF) operates two linked railyards near downtown Vancouver, WA. For purposes of permitting, the two locations are considered continuous and adjacent as one facility.

3. CURRENT PERMITTING ACTION

This permitting action is in response to Air Discharge Permit (ADP) Application number CL-3167 dated June 15, 2021. BSNF submitted ADP Application CL-3167 requesting the following:

• Approval to install a 1220 brake horsepower generator that will be used to provide emergency backup power to the wastewater treatment plant to allow it to continue operating in the case of an outage. The requirements of SUN-262 and SUN-263 will be incorporated as well, which cover the installation of two emergency generator engines. Additionally, four air heaters and a water heater will be removed as they were removed during the demolition of the car shop in 2020.

ADP 21-3471 will supersede Air Discharge Permit 20-3426 and Small Unit Notifications 262 and 263 in their entirety by this permitting action.

4. PROCESS DESCRIPTION

4.a. <u>Lochinvar Boiler</u>. The natural gas-fired boiler is used for hot water production and heat.

- 4.b. <u>Space Heating and Hot Water Heaters</u>. The facility operates 24 natural gas-fired heaters from various manufacturers, including Trane, Carrier, Rezor, Modine, Cambridge Engineering, Dayton, and Rheem. The units will typically operate primarily-during the winter months. There are also three hot water heaters, one each from Intellihot, Rheem, and Noritz.
- 4.c. <u>Emergency Power Generation</u>. Three diesel fired engine driven generators are used to generate emergency electrical power.

5. EQUIPMENT/ACTIVITY IDENTIFICATION

5.a. <u>Boiler</u>. The boiler is used for hot water production and heat. Actual operation of the boiler is estimated to be approximately 500 hr/yr.

Boiler Manufacturer:	Lochinvar
Model Number:	FTX0725
Serial Number:	30840
Heat Rate:	0.725 MMBtu/hr
Stack Diameter:	6 in
Stack Height:	30 ft
Stack Flow:	123 scfm @ $3\%O_2$ (est. with EPA Method 19)
Turndown ratio:	7:1
40 CFR 60 Subpart Dc:	No; Less than 10 MMBtu/hr
40 CFR 63 Subpart JJJJJJ:	No; Natural gas only

5.b. <u>Space Heating and Hot Water Heaters</u>. These units provide space heat in the winter and domestic hot water and are only fired on natural gas. Units one through eight are no longer listed as they are electric, and therefore do not have emissions. Units 25, 26, and 28 through 30 are no longer listed as they have been removed from the site during a 2020 demolition. Additionally, a water heater was removed, as it was removed from site during the same demolition.

Unit	Location	(ft)	(MMBtu/hr)
Heat 09 (Trane, m/n YCD036C310BE)	Office	17	0.08
Heat 10 (Trane, m/n YCD036C310BE)	Office	17	0.08
Heat 11 (Carrier)	Office	17	0.08
Heat 12 (Trane, m/n GPNC003MC10000)	Old Section Building	18	0.03
Heat 13 (Trane, m/n GPNC003MC10000)	Old Section Building	18	0.03
Heat 14 (Reznor, m/n X1-105)	Old Section Building	N/A	0.11
Heat 15 (Cambridge Engineering, m/n M112)	Wastewater Treatment Plant	20	0.36
Heat 16 (Modine, m/n HD75)	Wastewater Treatment Plant	26	0.08

Space Heater Information

Stack Height

Rating

Unit	Location	Stack Height (ft)	Rating (MMBtu/hr)
Heat 17 (Trane)	Roundhouse	25	0.10
Heat 18 (Trane)	Roundhouse	25	0.10
Heat 19 (Dayton, m/n 3E369)	Electrical	28	0.10
Heat 20 (Reznor)	Work Equipment	32	0.40
Heat 21 (Reznor)	Work Equipment	32	0.40
Heat 22 (Reznor)	Work Equipment	32	0.40
Heat 23 (Reznor)	Work Equipment	32	0.40
Heat 24 (Reznor)	Work Equipment	32	0.40
Heat 27 (Dayton, m/n 3E370)	Rip Track Mechanical	19	0.13
Heat 31 (Reznor)	Building D	21	0.13
Heat 32 (Reznor, m/n UDAP45)	Building D	21	0.05
Heat 33 (Reznor, m/n UDAP45)	Building D	21	0.05
Heat 34 (Reznor, m/n UDAP45)	Building D	21	0.05

Space Heater Information

Hot Water Heaters

Unit	Location	Rating (MMBtu/hr)
Water 01 (Intellihot, m/n 1200P)	Roundhouse	0.20
Water 03 (Noritz, m/n NCC199-SV)	Building D	0.20
Water 04 (Rheem m/n NCC 199-SV)	Rip Track Lunch	0.038

5.c. <u>Emergency Generator Diesel Engine (*removed*). The Emergency Generator Diesel Engine is used to provide power in the event of loss of line power. Details are as follow:</u>

Engine Make:	Allis Chalmers
Engine Model:	670T
Engine Serial Number:	70-24612
Date Manufactured:	Approx 1982 based on Onan genset manufactured date
Engine Output Rating:	173 bhp at 1800 rpm
Certification:	Not Tier Certified
Fuel Consumption:	3.21 gal/hr at full standby load
Generator Rating:	100 kW
Generator Make:	Onan
Generator Model:	Gen Set 100
Generator Serial Number:	E820622031
Exhaust Flow Rate:	300 dscfm @ 8% O ₂ (est. using EPA Method 19)
Stack Height:	10 ft from ground
Stack Diameter:	6 in
Stack Temperature:	750°F
Subpart ZZZZ Applicable:	Yes

 5.d. Emergency Generator Diesel Engine – Lift Station (*incorporated from SUN-262*). The Emergency Generator Diesel Engine is used to provide power in the event of loss of line power. Details are as follow: Engine Make: Cummins Engine Model: QSB-G13

Date Manufactured:	approximately August 2021
Engine Output Rating:	140 bhp
Certification:	EPA Tier 3
Fuel Consumption:	7.30 gal/hr at full standby load
Generator Rating:	80 kW
Generator Make:	Cummins
Generator Model:	C80D36
Stack Height:	81 in from ground
Stack Diameter:	4 in
Stack Temperature:	769°F
Subpart ZZZZ Applicable:	Yes

5.e. <u>Emergency Generator Diesel Engine – Building A(*incorporated from SUN-263*). The Emergency Generator Diesel Engine is used to provide power in the event of loss of line power. Details are as follow:</u>

Period Details are as former in	
Engine Make:	Cummins
Engine Model:	QSB5-G13
Date Manufactured:	approximately August 2021
Engine Output Rating:	176 bhp
Certification:	EPA Tier 3
Fuel Consumption:	8.9 gal/hr at full standby load
Generator Rating:	100 kW
Generator Make:	Cummins
Generator Model:	C100D6C
Stack Height:	81 in from ground
Stack Diameter:	4 in
Stack Temperature:	913°F
Subpart ZZZZ Applicable:	Yes

5.f. <u>Emergency Generator Diesel Engine – Wastewater Treatment Plant(*new*)</u>. The Emergency Generator Diesel Engine is used to provide power in the event of loss of line power. Details are as follow:

Engine Make:	Cummins
Engine Model:	QSK23-G7 NR2
Date Manufactured:	approximately August 2021
Engine Output Rating:	1220
Certification:	NSPS Emergency Tier 2
Fuel Consumption:	50.5 gal/hr at full standby load
Generator Rating:	750 kW
Generator Make:	Cummins
Generator Model:	DQCB
Stack Height:	10 ft from ground
Stack Diameter:	10 in
Stack Temperature:	840°F
Subpart ZZZZ Applicable:	Yes

5.g. <u>Spray Booth</u>. The Global Finishing Solutions spray booth (m/n IDBG-121220-S-CR-S) is a cross flow booth, measuring 12 ft wide by 12 ft high by 20 ft deep (interior), and equipped with one 5-hp, 34 in diameter exhaust fan (GFA). Face velocity is approximately 100 ft/min across the door intakes. The booth contains thirty-six 20 in by 20 in by 1 in intake filters and forty-nine 20 in by 20 in by 2 in exhaust filters.

Exhaust Flow:	15,400 acfm
Stack Diameter:	34 bin
Stack Height:	37 ft 1 in above ground level

5.h. <u>Tanks 2 and 3</u>. Diesel storage tanks with a throughput 20,000,000 gallons per year are used for diesel fuel dispensing.

Orientation:	Horizontal
Diameter:	11 ft
Length:	36 in
Description:	White tank with a domed roof

- 5.i. <u>Insignificant Emission Units</u>. The following pieces of facility equipment have been determined to have insignificant emissions and are not registered as emission units:
 - *VS10-20 Sand Silo*. Emissions from the silo are controlled by a pulsejet dust collector using four 8" diameter by 32" length pleated Ultraweb cartridges. The maximum capacity is 30 tons with an estimated throughput of 1,420 tpy. The air-to-cloth ratio is 4.2:1 with a filter area of 32 ft²/cartridge and an estimated airflow of 650 acfm. Assuming a maximum emission rate of 0.005 gr/dscf and 8,760 hr/yr operation, emissions are expected to be 2.7 lb/yr of PM. The stack is 50' above ground level and 6" in diameter.
 - *Stationary Tanks*. BNSF operates several horizontal, above-ground, storage tanks at the facility as specified below:

			Est. Annual				
	Size		Through-	Diam.	Length	Tank	Roof
Tank No.	(gal)	Contents	put (gal)	(ft)	(ft)	Color	Shape
Tank 4*	8,000	Lube Oil	50.000	10	15	White	Dome
Tank 5*	500	Lube Oil	50,000	4	7	White	Flat
Tank 6	25,000	Used Oil	15,000	11	36	White	Dome
Tank 8	1,100	Diesel	3,000	4	12	White	Dome
Tank 11 [†]	292	Diesel	0	3.3	6	White	Dome
Tank 12	270	Rail Lube	600	3.5	4	Black	Flat
Tank 13	300	Diesel	300	4.3	6	White	Dome
* Tanks 4 ar	* Tanks 4 and 5 are connected and have the same throughout						

[†] Tank is portable and rarely used.

BNSF provided estimated emissions using the EPA TANKS (v. 4.09d) software. The contents of these tanks have very low vapor pressures or are very small capacities/throughputs and are therefore not expected to emit appreciable quantities of VOC.

- *Parts Washers*. BNSF operates three ZEP electric parts washers (m/n 906201): Roundhouse washer (s/n 3089618), Fueling Platform Washer (s/n 8053978), and Car Shop Tool Room Washer. The solvent used in the washers is Zep Dyna 143, which according to the 6/24/2012 Safety Date Sheet (SDS), is 90–100% hydrotreated light distillates [64742-47-8], a VOC, with no TAPs or HAPs. Because the usage is estimated at less than 20 gal/yr, SWCAA considers the VOC emissions to be negligible. If the solvent usage increases above 75 gal, the SDS is updated, or BNSF changes the solvent, the Permittee must contact SWCAA for reevaluation.
- *Abrasive Blasting*. BNSF operates an abrasive blasting booth for cleaning metal parts for railcar maintenance. Emissions are controlled by a small baghouse. SWCAA considers PM emissions from the baghouse to be negligible.
- 5.f. Other Equipment.
 - BNSF has an existing (and unpermitted) small paint booth and has stated to SWCAA that it is not used. No additional information was submitted to SWCAA to allow the operation of the paint booth; therefore, the paint booth is <u>not approved</u> for operation and any operation of the booth constitutes a violation of SWCAA 400-110. An ADP application must be submitted to SWCAA and an ADP issued prior to any future operation of the booth.
 - There is an oil-water separator that processes oil from draining and maintaining locomotives. Approximately 9,000 gallons of used oil is collected from the separator annually. SWCAA considers VOC emissions from the separator to be negligible.
 - There is also a wastewater treatment plant that consists of a grit chamber, oil-water separator and a Dissolved Air Floatation system. The treatment plant receives contact stormwater and wash water and is rated at 200 gal/min. SWCAA considers VOC emissions from the treatment plant to be negligible.

ID No.	Generating Equipment/Activity	# of Units	Control Equipment	# of Units
1	Lochinvar Boiler (m/n FTX07225)	1	Low sulfur fuel (natural gas)	N/A
2	Space Heaters (24 units) and Hot Water Heaters (3 units)	27	Low sulfur fuel (natural gas)	N/A
3	Emergency Generator Diesel Engine – Lift Station, Cummins (QSB5-G13)	1	Ultra low sulfur diesel fuel (15 ppm)	N/A

5.g. Equipment/Activity Summary.

ID No.	Generating Equipment/Activity	# of Units	Control Equipment	# of Units
4	Emergency Generator Diesel Engine – Building A, Cummins (QSB5-G13)	1	Ultra low sulfur diesel fuel (15 ppm)	N/A
5	Emergency Generator Diesel Engine – Wastewater Treatment Plant, Cummins (QSK23-G7 NR2)	1	Ultra low sulfur diesel fuel (15 ppm)	N/A
6	Gasoline Fuel Dispensing and Storage (Tank 7)	1	None	N/A
7	Diesel Dispensing and Storage (Tank 2 and Tank 3)	2	Pressure Valve, Emergency Valve, and Safety Valve	6

6. EMISSIONS DETERMINATION

Emissions to the ambient atmosphere from the facility, as proposed in ADP Application CL-3167, consist of nitrogen oxides (NO_x), carbon monoxide (CO), volatile organic compounds (VOC), particulate matter (PM) sulfur dioxide (SO₂), toxic air pollutants (TAPs), and hazardous air pollutants (HAPs).

6.a. <u>Lochinvar Boiler</u>. The Lochinvar Boiler (m/n FTX07225) is rated at 0.725 MMBtu/hr and can only be fired on natural gas. The following emission factors are used to calculate emissions:

Pollutant	lb/MMscf	lb/hr**	tpy	Source
NO _x	37.1	0.026	0.12	SWCAA 400-072 (30 ppm)*
СО	37.7	0.027	0.12	SWCAA 400-072 (50 ppm)*
VOC (as C ₃ H ₈)	5.5	0.0039	0.017	AP-42 § 1.4 (7/1998)
PM	7.6	0.0043	0.024	AP-42 § 1.4 (7/1998)
PM ₁₀	7.6	0.0054	0.024	AP-42 § 1.4 (7/1998)
PM _{2.5}	7.6	0.0054	0.024	AP-42 § 1.4 (7/1998)
SO ₂	0.6	0.00043	0.0019	AP-42 § 1.4 (7/1998)
CO ₂ e	120143	85	371.8	40 CFR 98
Benzene [71-43-2]	0.0021	0.013	6.5×10 ⁻⁶	AP-42 § 1.4 (7/1998)
Formaldehyde [50-00-0]	0.075	0.467	2.3×10 ⁻⁴	AP-42 § 1.4 (7/1998)

* Emission factor calculated using EPA Method 19 and assuming an ideal gas.

**Emission rate calculated using emission factors, firing rate and 1020 btu/dscf for AP-42 emissions factors, 1026 btu/dscf was used for 40 CFR 98 emission calculations.

Annual emissions shall be determined by the fuel usage or total number of hours of operation multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.b. <u>Space Heaters and Hot Water Heaters</u>. All of the individual units can only be fired on natural gas. For PTE purposes, the units are assumed to operate 8,760 hr/yr, each. The following emission factors are used to calculate emissions.

	Emissio	n Factors	PTE at 8760 hr/yr		
Pollutant	lb/MMscf	lb/hr*	tpy	Source	
NO _x	100	0.445	1.992	AP-42 § 1.4 (7/1998)	
СО	84	0.382	1.673	AP-42 § 1.4 (7/1998)	
VOC (as C ₃ H ₈)	5.5	0.025	0.110	AP-42 § 1.4 (7/1998)	
PM	7.6	0.0346	0.151	AP-42 § 1.4 (7/1998)	
PM ₁₀	7.6	0.0346	0.151	Assumed equal to PM	
PM _{2.5}	7.6	0.0346	0.151	Assumed equal to PM	
SO ₂	0.708	0.00322	0.0141	Mass Balance [†]	
CO ₂ e	119,500	534.4	2,380.	40 CFR 98 [‡]	
Benzene [71-43-2]	0.0021	9.55×10 ⁻⁶	4.18×10 ⁻⁵	AP-42 § 1.4 (7/1998)	
Formaldehyde [50-00-0]	0.075	3.41×10 ⁻⁴	0.00149	AP-42 § 1.4 (7/1998)	

* The calculation assumes maximum combined fuel rate for all units of 4.64 MMBtu/hr.

[†] The calculation assumes that the natural gas fuel properties are 7 ppmv SO₂ (NWN South), 0.051 lb/scf density, and 1,020 Btu/scf.

[‡] The CO₂e emission factor for natural gas is derived from 40 CFR 98 Subpart C (11/29/2013) with base factors of 117.0 lb/MMBtu CO₂, 0.05512 lb/MMBtu CH₄, and 0.0657 lb/MMBtu N₂O, including by the greenhouse warming potential (GWP) multipliers of CO₂=1, CH₄=25, and N₂O=298.

Annual emissions shall be determined by the fuel usage or total number of hours of operation multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.c. <u>Emergency Generator Engine- Lift Station, Cummins</u>. The emergency generator engine is used to provide emergency power and can only be fired on diesel. For PTE purposes, the engine is assumed to operate no more than 200 hr/yr. Unless otherwise specified, SWCAA assumed that diesel and biodiesel have the same emission characteristics. The following emission factors are used to calculate emissions.

	Emissio	1 Factors	PTE at 200 hr/yr	
Pollutant	g/bhp-hr	lb/hr *	tpy	Source**
NO _x	3.18	0.98	0.098	Cummins
СО	0.30	0.093	0.0093	Cummins
VOC (as C ₃ H ₈)	0.02	0.0062	0.00062	Cummins
PM	0.04	0.012	0.0012	Cummins

Pollutant	Emission Factors		PTE at 200 hr/vr		
	g/bhp-hr	lb/hr *	tpy	Source**	
PM ₁₀	0.04	0.012	0.0012	Assumed equal to PM	
PM _{2.5}	0.04	0.012	0.0012	Assumed equal to PM	
SO ₂	N/A	0.0016	0.00016	Mass Balance ‡	
CO ₂ e	N/A	164.82	16.482	40 CFR 98 #	

* The calculation assumes maximum fuel rate of 7.3 gal/hr.

**Cummins emission factors calculated using Emission Data Sheet standby values at full load and 140 BHP.

[‡] The calculation assumes that the liquid fuel (No. 2 fuel oil or biodiesel) properties are 15 ppmw S, 7.206 lb/gal density, and 0.138 MMBtu/gal.

[#] The CO₂e emission factor for fuel oil is derived from 40 CFR 98 Subpart C (November 29, 2013) with base factors of 163.1 lb/MMBtu CO₂, 0.1653 lb/MMBtu CH₄, and 0.3942 lb/MMBtu N₂O, including the GWP multipliers of CO₂=1, CH₄=25, and N₂O=298 and scaled from 0.138 MMBtu/gal to 0.140 MMBtu/gal.

Annual emissions shall be determined by the fuel usage or total number of hours of operation multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.d. <u>Emergency Generator Engine- Building A, Cummins</u>. The emergency generator engine is used to provide emergency power and can only be fired on diesel. For PTE purposes, the engine is assumed to operate no more than 200 hr/yr. Unless otherwise specified, SWCAA assumed that diesel and biodiesel have the same emission characteristics. The following emission factors are used to calculate emissions.

	PTE at Emission Factors 200 hr/yr			
Pollutant	g/bhp-hr	lb/hr *	tpy	Source**
NO _x	3.18	1.23	0.123	Cummins
СО	0.30	0.12	0.012	Cummins
VOC (as C ₃ H ₈)	0.02	0.0078	0.00078	Cummins
PM	0.04	0.016	0.0016	Cummins
PM ₁₀	0.04	0.016	0.0016	Assumed equal to PM
PM _{2.5}	0.04	0.016	0.0016	Assumed equal to PM
SO ₂	N/A	0.0019	0.00019	Mass Balance [‡]
CO ₂ e	N/A	200.95	20.095	40 CFR 98 [#]

* The calculation assumes maximum fuel rate of 8.9 gal/hr.

**Cummins emission factors calculated using Emission Data Sheet standby values at full load and 176 BHP.

[‡] The calculation assumes that the liquid fuel (No. 2 fuel oil or biodiesel) properties are 15 ppmw S, 7.206 lb/gal density, and 0.138 MMBtu/gal.

	Emission Factors		PTE at 200 hr/vr		
Pollutant	g/bhp-hr	lb/hr *	tpy	Source**	
[#] The CO ₂ e emission 2013) with base f	on factor for fuel factors of 163.1 lb	oil is derived fr /MMBtu CO ₂ ,	om 40 CFR 98 Subp 0.1653 lb/MMBtu C	art C (November 29, H4, and 0.3942	

lb/MMBtu N₂O, including the GWP multipliers of CO₂=1, CH₄=25, and N₂O=298 and scaled from 0.138 MMBtu/gal to 0.140 MMBtu/gal.

Annual emissions shall be determined by the fuel usage or total number of hours of operation multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.e. <u>Emergency Generator Engine- Wastewater Treatment Plant, Cummins</u>. The emergency generator engine is used to provide emergency power and can only be fired on diesel. For PTE purposes, the engine is assumed to operate no more than 200 hr/yr. Unless otherwise specified, SWCAA assumed that diesel and biodiesel have the same emission characteristics. The following emission factors are used to calculate emissions.

	Emissio	n Factors	PTE at 200 hr/vr		
Pollutant	g/bhp-hr	lb/hr *	tpy	Source**	
NO _x	5.87	15.79	1.58	Cummins	
СО	0.28	0.75	0.075	Cummins	
VOC (as C ₃ H ₈)	0.12	0.32	0.032	Cummins	
PM	0.05	0.13	0.013	Cummins	
PM ₁₀	0.05	0.13	0.013	Assumed equal to PM	
PM _{2.5}	0.05	0.13	0.013	Assumed equal to PM	
SO ₂	N/A	0.011	0.0011	Mass Balance [‡]	
CO ₂ e	N/A	1140	114	40 CFR 98 [#]	

* The calculation assumes maximum fuel rate of 50.5 gal/hr.

**Cummins emission factors calculated using Emission Data Sheets standby values at full load and 1220 BHP.

- [‡] The calculation assumes that the liquid fuel (No. 2 fuel oil or biodiesel) properties are 15 ppmw S, 7.206 lb/gal density, and 0.138 MMBtu/gal.
- [#] The CO₂e emission factor for fuel oil is derived from 40 CFR 98 Subpart C (November 29, 2013) with base factors of 163.1 lb/MMBtu CO₂, 0.1653 lb/MMBtu CH₄, and 0.3942 lb/MMBtu N₂O, including the GWP multipliers of CO₂=1, CH₄=25, and N₂O=298 and scaled from 0.138 MMBtu/gal to 0.140 MMBtu/gal.

Annual emissions shall be determined by the fuel usage or total number of hours of operation multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.f. <u>Gasoline Dispensing and Storage.</u> Total VOC emissions from gasoline transfer were estimated using the following emission factors from AP-42 Section 5.2 (June 2008) and

from gasoline storage by using EPA TANKS software (ver. 4.09d) for Tank 7 breathing and emptying losses:

Emission Source	Emission Factor at (lb/10 ³ gallons)	PTE at 20,000 gal/yr (tpy)
Splash Filling		
VOC	11.5	0.115
TAPs	5.85	0.058
HAPs	1.47	0.015
Aboveground Tank Breathing and Emptying	g*	
VOC	8.586	0.086
TAPs	4.37	0.044
HAPs	1.10	0.011
Vehicle Refueling – Displacement, Uncontr	olled	
VOC	11.0	0.110
TAPs	5.59	0.056
HAPs	1.41	0.014
Vehicle Refueling – Spillage		
VOC	0.70	0.0070
TAPs	0.36	0.0036
HAPs	0.089	0.00089
* Tank emissions determined using EPA TANE horizontal tank is 3.5 ft in diameter, 5.0 ft lon a maximum annual throughout of 20.000 gal/	KS software (ver. 4.09d). Tank 7 is a ng, has a capacity of 250 gal, and wa vr. Meteorological conditions used	a white, domed, as evaluated assuming were for Portland, OR.

Based on EPA Speciate 3.2 profile number 2455, 50.85% of the total VOC emissions are toxic air pollutants (TAPs) as defined by WAC 173-460 (as in effect August 21, 1998), and 12.78% of the total VOC emissions are federally listed hazardous air pollutants (HAPs).

Gasoline, TAPs/HAPs	Emission Factor (% of VOC)	PTE at 20,000 gal/yr (lb/yr)
benzene [71-43-2]	1.4	9.0
n-butane [106-97-8]	23.43	150.0
cumene [98-82-8]	0.04	0.30
cyclohexane [110-82-7]	0.25	1.6
cyclopentane [287-92-3]	0.77	4.9
ethylbenzene [100-41-4]	0.66	4.2
n-heptane [142-82-5]	0.46	2.9
n-hexane [110-54-3]	2.14	13.70
methylcyclohexane [108-87-2]	0.09	0.6

Gasoline, TAPs/HAPs	Emission Factor (% of VOC)	PTE at 20,000 gal/yr (lb/yr)
n-nonane [111-84-2]	0.05	0.3
n-octane [111-65-9]	0.13	0.8
n-pentane [109-66-0]	12.05	77.1
toluene [108-88-3]	4.36	27.9
trimethylbenzenes [25551-13-7]	0.84	5.4
2,2,4-trimethylpentane [540-84-1]	0.89	5.7
xylenes (m-, o-, p- isomers) [1330-20-7]	3.29	21.1
	TOTAL HAPs:	81.2
	TOTAL TAPs:	323.2

Annual emissions shall be determined by the total number of gallons of fuel dispensed multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.g. <u>Diesel Dispensing and Storage</u>. BNSF operates several diesel storage tanks, many of which have been determined to have insignificant emissions by SWCAA. Two tanks, Tanks 2 and 3, however, do have notable emissions. Total VOC emissions were estimated using EPA TANKS (v. 4.09d) software. Unless otherwise specified, SWCAA assumed that diesel and biodiesel have the same emission characteristics.

Tank No.	Size (gal)	Contents	Est. Annual Throughput (gal)	Diam. (ft)	Length (ft)	Tank Color	Roof Shape
Tank 2	25,000	Diesel	10,000,000	11	36	White	Dome
Tank 3	25,000	Diesel	10,000,000	11	36	White	Dome

Emission Source	Emission Factor (lb/10 ³ gallons)	PTE (tpy) at 10.01 MMgal/yr
Splash Filling		
VOC	0.0399	0.200
Aboveground Tank Breathing and Emptying*		
VOC	0.01771	0.089
Vehicle Refueling - Displacement, Uncontrolled		
VOC	0.0399	0.200
Vehicle Refueling – Spillage		
VOC	0.0013	0.0065
* Tank emissions determined using EPA TANKS (v. 4.	09d) software. The white.	domed, horizontal tank

* Tank emissions determined using EPA TANKS (v. 4.09d) software. The white, domed, horizontal tank is 36 ft long, and 11 ft in diameter, has a capacity of 25,000 gal, and was evaluated assuming a maximum annual throughput of 10,010,000 gal/yr and have been scaled up based on an increased throughput of 20,000,000 gallons per year. Meteorological conditions used were for Portland, OR. Annual emissions shall be determined by the throughput multiplied by the emission factors above, unless otherwise specified by SWCAA.

6.h. <u>Emissions Summary</u>. The following tables represent the maximum facilitywide PTE as established by permit limits, which may or may not equal the sums of emissions calculated using the emission factors listed elsewhere in Section 6.

Criteria Air Pollutant	Facilitywide PTE (tpy)
NO _x	3.51
СО	1.54
VOC	1.43
SO ₂	0.014
Lead	Not Applicable
РМ	0.147
PM ₁₀	0.147
PM _{2.5}	0.147
CO ₂ /CO ₂ e	2,203
NH ₃	Not Applicable
H ₂ S	Not Applicable
O ₃	Not Applicable

	Facilitywide PTE
Toxic/Hazardous Air Pollutant	(tpy)
benzene [71-43-2]	4.5×10 ⁻³
n-butane [106-97-8]	0.075
cumene [98-82-8]	1.3×10 ⁻⁴
cyclohexane [110-82-7]	8.0×10 ⁻⁴
cyclopentane [287-92-3]	2.5×10^{-3}
ethylbenzene [100-41-4]	2.1×10 ⁻³
formaldehyde [50-00-0]	2.1×10 ⁻³
n-heptane [142-82-5]	1.5×10 ⁻³
n-hexane [110-54-3]	6.8×10 ⁻³
methylcyclohexane [108-87-2]	2.9×10 ⁻⁴
n-nonane [111-84-2]	1.6×10 ⁻⁴
n-octane [111-65-9]	4.2×10 ⁻⁴
n-pentane [109-66-0]	0.039
toluene [108-88-3]	0.014
trimethylbenzenes [25551-13-7]	2.69×10 ⁻³

Toxic/Hazardous Air Pollutant	Facilitywide PTE (tpy)
2,2,4-trimethylpentane [540-84-1]	2.85×10 ⁻³
xylenes (all isomers) [1330-20-7]	0.011
TOTAL TAPs	0.161
TOTAL HAPs	0.041

7. REGULATIONS AND EMISSION STANDARDS

Regulations have been established for the control of emissions of air pollutants to the ambient air. Regulations applicable to the proposed facility that have been used to evaluate the acceptability of the proposed facility and establish emission limits and control requirements include, but are not limited to, the following regulations, codes, or requirements. These items establish maximum emissions limits that could be allowed and are not to be exceeded for new or existing facilities. More stringent limits are established in this Permit consistent with implementation of Best Available Control Technology (BACT):

- 7.a. <u>40 CFR 60 Subpart Dc "Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units"</u> applies to any steam generating unit with a heat input greater than or equal to 10 MMBtu/hr, but less than or equal to 100 MMBtu/hr constructed, modified, or reconstructed after June 9, 1989. The Lochinvar boiler is less than 10 MMBtu/hr; therefore, this regulation does not apply to the boiler.
- 7.b. <u>40 CFR 60 Subpart IIII [§60.4200 et seq.]</u> "Standards of Performance for Stationary Compression Ignition Internal Combustion Engines" applies to each compression ignition (CI) internal combustion engine (ICE) that commences construction after July 11, 2005 and is manufactured after April 1, 2006, or that is modified or reconstructed after July 11, 2005. All three new Cummins Emergency Generator Diesel Engines are CI ICE configuration used in emergency situations; therefore, this regulation applies to the new engines.

SWCAA has not yet taken delegation of this regulation; therefore, at this time, EPA is the Administrator of this regulation and the facility must communicate directly with EPA regarding compliance demonstrations and/or reporting required by this rule.

- 7.c. <u>40 CFR 63.9 "Notification Requirements"</u> requires that notification of the initial startup of the affected units subject to 40 CFR 63 be submitted to the delegated authority. The Emergency Generator Diesel Engines are subject to 40 CFR 63 Subpart ZZZZ, but are not subject to any of the requirements under Subpart A per §63.6590(b)(3); therefore §63.9 does not apply to the emergency generator engines.
- 7.d. <u>40 CFR 63 Subpart VV [§63.1040 *et seq.*] "National Emission Standards for Oil-Water Separators and Organic-Water Separators"</u> applies to the control of air emissions from oil-water separators and organic-water separators, if referenced by another subpart of 40 CFR

60, 61, or 63. This facility is not subject to a subpart of 40 CFR 60, 61, or 63 that references the oil-water separator; therefore, this subpart does not apply.

7.e. <u>40 CFR 63 Subpart ZZZZ [§63.6580 et seq.] "National Emissions Standards for Hazardous</u> <u>Air Pollutants (NESHAP) for Stationary Reciprocating Internal Combustion Engines"</u> establishes national emission limitations and operating limitations for HAP emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. The new Cummins Emergency Generator Diesel Engines are a CI ICE configuration used in emergency situations located at an area source; therefore, this regulation applies to the new engines. However, per §63.6590(c)(1) because the engines are located at an area source and comply with requirements of 40 CFR 60 Subpart IIII no further requirements apply under this subpart.

There may be other requirements under the Subpart that apply to the facility that are not specified above. SWCAA has not yet taken delegation of this regulation; therefore, at this time, EPA is the Administrator of this regulation and the facility must communicate directly with EPA regarding compliance demonstrations and/or reporting required by this rule.

- 7.f. <u>40 CFR 63 Subpart JJJJJJ [§63.11193 et seq.] "National Emission Standards for Hazardous</u> <u>Air Pollutants for Industrial, Commercial, and Institutional Boilers Area Sources"</u> establishes national emission limitations and operating limitations for HAP emitted from boilers fired on specific fuels at area sources. The facility is an area source of HAP and the boiler is classified as a gas boiler. Gas-fired boilers, which burn gaseous fuel and only burn liquid fuel during periods of gas curtailment, gas supply interruption, and periodic testing up to 48 hr/yr, are not covered under the regulation; therefore, this regulation does not apply to the boiler.
- 7.g. <u>40 CFR 63 Subpart CCCCCC [§ 63.11110 et seq.]</u> "National Emission Standards for Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities" applies to gasoline dispensing facilities. BNSF dispenses gasoline into vehicles at less than 10,000 gal/mo and is an area source of HAP; therefore, this regulation applies to the gasoline dispensing operation.
- 7.h. <u>40 CFR 70 "State Operating Permit Programs"</u> requires facilities with site emissions of any regulated air pollutant greater than 100 tpy, any single HAP greater than 10 tpy or any aggregate combination of HAPs greater than 25 tpy. The facility does not emit any criteria pollutants or HAP above major thresholds; therefore, this regulation does not apply to the facility.
- 7.i. <u>Revised Code of Washington (RCW) 70A.15.2040</u> empowers any activated air pollution control authority to prepare and develop a comprehensive plan or plans for the prevention, abatement and control of air pollution within its jurisdiction. An air pollution control authority may issue such orders as may be necessary to effectuate the purposes of the Washington Clean Air Act (RCW 70A.15) and enforce the same by all appropriate

administrative and judicial proceedings subject to the rights of appeal as provided in Chapter 62, Laws of 1970 ex. sess. This law applies to the facility.

- 7.j. <u>RCW 70A.15.2210</u> provides for the inclusion of conditions of operation as are reasonably necessary to assure the maintenance of compliance with the applicable ordinances, resolutions, rules and regulations when issuing an ADP for installation and establishment of an air contaminant source. This law applies to the facility.
- 7.k. <u>WAC 173-401 "Operating Permit Regulation"</u> requires all major sources and other sources as defined in WAC 173-401-300 to obtain an operating permit. This regulation is not applicable because this source is not a potential major source and does not meet the applicability criteria set forth in WAC 173-401-300. The facility does not emit any criteria pollutants or HAP above major thresholds; therefore, this regulation does not apply to the facility.
- 7.1. <u>WAC 173-460 "Controls for New Sources of Toxic Air Pollutants"</u> requires BACT for toxic air pollutants (T-BACT), identification and quantification of emissions of toxic air pollutants and demonstration of protection of human health and safety. The facility emits TAPs; therefore, this regulation (effective date 7/21/1998) applies to the facility.
- 7.m. <u>WAC 173-476 "Ambient Air Quality Standards"</u> establishes ambient air quality standards for PM₁₀, PM_{2.5}, lead, SO₂, NO_x, ozone, and CO in the ambient air, which shall not be exceeded. The facility emits PM₁₀, PM_{2.5}, SO_x, NO_x, and CO; therefore, certain sections of this regulation apply. The facility does not emit lead; therefore, the lead regulation section does not apply.
- 7.n. <u>SWCAA 400-040 "General Standards for Maximum Emissions"</u> requires all new and existing sources and emission units to meet certain performance standards with respect to Reasonably Available Control Technology (RACT), visible emissions, fallout, fugitive emissions, odors, emissions detrimental to persons or property, SO₂, concealment and masking, and fugitive dust. This regulation applies to the facility.
- 7.0. <u>SWCAA 400-040(1) "Visible Emissions"</u> requires that no emission of an air contaminant from any emissions unit shall exceed twenty percent opacity for more than three minutes in any one hour at the emission point, or within a reasonable distance of the emission point. This regulation applies to the facility.
- 7.p. <u>SWCAA 400-040(2) "Fallout"</u> requires that no emission of PM from any source shall be deposited beyond the property under direct control of the owner(s) or operator(s) of the source in sufficient quantity to interfere unreasonably with the use and enjoyment of the property upon which the material is deposited. This regulation applies to the facility.
- 7.q. <u>SWCAA 400-040(3) "Fugitive Emissions"</u> requires that reasonable precautions be taken to prevent the fugitive release of air contaminants to the atmosphere. This regulation applies to the facility.

- 7.r. <u>SWCAA 400-040(4)</u> "Odors" requires any source which generates odors that may unreasonably interfere with any other property owner's use and enjoyment of their property to use recognized good practice and procedures to reduce these odors to a reasonable minimum. This source must be managed properly to maintain compliance with this regulation. This regulation applies to the facility.
- 7.s. <u>SWCAA 400-040(6) "Sulfur Dioxide"</u> requires that no person shall emit a gas containing in excess of 1,000 ppmd of SO₂, corrected to 7% O₂ or 12% CO₂ as required by the applicable emission standard for combustion sources. The facility emits SO₂; therefore, this regulation applies to the facility.
- 7.t. <u>SWCAA 400-040(8) "Fugitive Dust Sources"</u> requires that reasonable precautions be taken to prevent fugitive dust from becoming airborne, and minimize emissions. This regulation applies to the facility.
- 7.u. <u>SWCAA 400-050 "Emission Standards for Combustion and Incineration Units"</u> requires that all provisions of SWCAA 400-040 be met and that no person shall cause or permit the emission of PM from any combustion or incineration unit in excess of 0.23 g/Nm³dry (0.1 gr/dscf) of exhaust gas at standard conditions. The facility has combustion units; therefore, this regulation applies to the facility.
- 7.v. <u>SWCAA 400-060 "Emission Standards for General Process Units"</u> requires that all new and existing general process units not emit PM in excess of 0.23 g/Nm³dry (0.1 gr/dscf) of exhaust gas. The facility has general process units; therefore, this regulation applies to the facility.
- 7.w. <u>SWCAA 400-110 "New Source Review"</u> requires that an ADP Application be filed with SWCAA, and an ADP be issued by SWCAA, prior to establishment of the new source, emission unit, or modification. The new units meet the definition of a new source; therefore, this regulation applies to the facility.
- 7.x <u>SWCAA 400-111 "Requirements for Sources in a Maintenance Plan Area"</u> requires that no approval to construct or alter an air contaminant source shall be granted unless it is evidenced that:
 - (1) The equipment or technology is designed and will be installed to operate without causing a violation of the applicable emission standards;
 - (2) Emissions will be minimized to the extent that the new source will not exceed emission levels or other requirements provided in the maintenance plan;
 - (3) Best Available Control Technology will be employed for all air contaminants to be emitted by the proposed equipment;
 - (4) The proposed equipment will not cause any ambient air quality standard to be exceeded; and
 - (5) If the proposed equipment or facility will emit any toxic air pollutant regulated under WAC 173-460, the proposed equipment and control measures will meet all the requirements of that Chapter.

The facility is located in an area that is a maintenance area for CO and ozone; therefore, this regulation applies to the facility.

- 7.y. <u>SWCAA 400-113 "Requirements for New Sources in Attainment or Nonclassifiable</u> <u>Areas"</u> requires that no approval to construct or alter an air contaminant source shall be granted unless it is evidenced that:
 - (1) The equipment or technology is designed and will be installed to operate without causing a violation of the applicable emission standards;
 - (2) BACT will be employed for all air contaminants to be emitted by the proposed equipment;
 - (3) The proposed equipment will not cause any ambient air quality standard to be exceeded; and
 - (4) If the proposed equipment or facility will emit any toxic air pollutant regulated under WAC 173-460, the proposed equipment and control measures will meet all the requirements of that Chapter.

The facility is located in an area that is in attainment for PM, NO_x, and SO₂; therefore, this regulation applies to the facility.

8. RACT/BACT/BART/LAER/PSD/CAM DETERMINATIONS

The proposed equipment and control systems incorporate BACT for the types and amounts of air contaminants emitted by the processes as described below:

BACT Determinations

- 8.a. <u>Boiler</u>. The proposed use of low-sulfur fuel (natural gas) and proper combustion controls has been determined to meet the requirements of BACT for the types and quantities of emissions from the boiler.
- 8.b. <u>Emergency Generator Diesel Engines</u>. The use of ultra-low sulfur diesel fuel (≤15 ppmw), limitation of visible emissions to 15% opacity or less, and limitation of engine operation to less than 100 hr/yr for maintenance checks and readiness testing has been determined to meet the requirements of BACT for the types and quantities of air contaminants emitted from all engines.
- 8.c. <u>Space Heaters and Hot Water Heaters</u>. The proposed use of low-sulfur fuel (natural gas) and proper combustion controls has been determined to meet the requirements of BACT for the types and quantities of emissions from the space heaters and hot water heaters.
- 8.d. <u>Gasoline Transfer and Storage</u>. The gasoline storage tank is assumed to be splash-filled as there is no documentation that there is either a top fill tube or that the tank is bottom filled. The size and throughput of the tank is relatively small, as are the emissions. It is potentially cost prohibitive to retrofit the existing tank to comply with more current emissions control. The tank is equipped with emergency and safety vents. The use of these vents as been determined to meet the requirements of BACT for the types and quantities of emissions.

- 8.e. <u>Diesel Fuel Storage</u>. The storage tanks are equipped with emergency and safety vents. There are no other controls that would be cost effective for the control of emissions from this source. The use of these vents as been determined to meet the requirements of BACT for the types and quantities of emissions.
- 8.f. <u>Prevention of Significant Deterioration (PSD) Applicability Determination</u>. This permitting action will not result in a potential increase in emissions equal to or greater than the PSD thresholds. Therefore, PSD review is not applicable to this action.
- 8.g. <u>Compliance Assurance Monitoring (CAM) Applicability Determination</u>. CAM is not applicable to any emission unit at this facility because it is not a major source and is not required to obtain a Part 70 permit.

9. AMBIENT IMPACT ANALYSIS

- 9.a. <u>Criteria Air Pollutant Review</u>. Emissions of NO_x, CO, PM, VOC (as a precursor to O₃), and SO₂ are emitted at levels where no adverse ambient air quality impact is anticipated.
- 9.b. <u>Toxic Air Pollutant Review</u>. The new equipment and modifications proposed in ADP Application CL-3167 will result in a small increase in the quantity of TAP emissions from the facility. BACT measures at the facility will limit emissions of Class A and B toxic air pollutants to below the applicable Small Quantity Emission Rates (SQER) or Acceptable Source Impact Level (ASILs) specified in WAC 173-460 (effective 7/21/1998).
- 9.c. <u>Emergency Generator Diesel Engines:</u> The emergency generator diesel engines will operate no more than 100 hr/yr for testing, maintenance, and as necessary to supply power during an emergency, therefore the ambient impact of this source is not likely to be significant.

Conclusions

- 9.d. Operation of the existing emission units at this facility, as proposed in ADP Application CL-3167, will not cause the ambient air quality requirements of 40 CFR 50 "National Primary and Secondary Ambient Air Quality Standards" to be violated.
- 9.e. Operation of the existing emission units at this facility, as proposed in ADP Application CL-3167, will not cause the requirements of WAC 173-460 "Controls for New Sources of Toxic Air Pollutants," WAC 173-470 "Ambient Air Quality Standards for Particulate Matter," WAC 173-474 "Ambient Air Quality Standards for Sulfur Oxides," and WAC 173-475 "Ambient Air Quality Standards for Carbon Monoxide, Ozone, and Nitrogen Dioxide" to be violated.
- 9.f. The existing emission units at this facility, as proposed in ADP Application CL-3167, can be operated without causing a violation of emission standards for sources as established under SWCAA General Regulations Sections 400-040 "General Standards for Maximum Emissions," 400-050 "Emission Standards for Combustion and Incineration Units," and 400-060 "Emission Standards for General Process Units."

10. DISCUSSION OF APPROVAL CONDITIONS

SWCAA has made a determination to issue ADP 21-3471 in response to ADP Application CL-3167. ADP 21-3471 contains approval requirements deemed necessary to assure compliance with applicable regulations and emission standards as discussed below.

10.a. <u>Supersession of Previous Permits</u>. ADP 21-3471 supersedes Air Discharge Permit 20-3426 and Small Unit Notifications 262 and 263 in their entirety.

10.b. <u>Emission Limits</u>. Facilitywide emission limits are based on the sum of the emission limits for approved equipment calculated in Section 6 of this Technical Support Document.

The Lochinvar Boiler has been limited to 30 ppmvd for NO_x and 50 ppmvd for CO based on the manufacturer's estimated maximum emission rate.

Visible emissions from the boiler, space heaters, and hot water heaters burning natural gas have been limited to 0% opacity, consistent with proper operation.

The Emergency Generator Diesel Engines have been limited to 5% opacity, based on the expectation due to EPA certification of the units that this limit is achievable in practice.

Emission limits for diesel fuel dispensing have been calculated based on an annual throughput of 20,000,000 gallons per year.

10.c. <u>Operational Limits and Requirements</u>. General operational requirements with respect to emission operation were included.

Vertical discharge is required for all emission units to improve dispersion. It is assumed at the time of the application that all units meet this requirement.

The boiler, space heaters, and hot water heaters are restricted to burning natural gas and the emergency engines are restricted to burning ultralow sulfur (<15 ppm) fuel oil.

- 10.d. <u>Monitoring and Recordkeeping Requirements</u>. ADP 21-3471 establishes monitoring and recordkeeping requirements sufficient to document compliance with applicable emission limits, ensure proper operation of approved equipment and provide for compliance with generally applicable requirements.
- 10.e. <u>Emission Monitoring and Testing Requirements</u>. The Lochinvar Boiler is required to be emission monitored (tuned) at least annually to verify that the unit is meeting the established emission limits.
- 10.f. <u>Reporting Requirements</u>. ADP 21-3471 establishes general reporting requirements for annual air emissions, upset conditions and excess emissions. Specific reporting requirements are established for fuel consumption, operational hours, and material throughput. Reports are to be submitted on an annual basis.

11. START-UP AND SHUTDOWN/ALTERNATIVE OPERATING SCENARIOS/POLLUTION PREVENTION

11.a. <u>Start-up and Shutdown Provisions</u>. Pursuant to SWCAA 400-081 "Start-up and Shutdown", technology-based emission standards and control technology determinations shall take into consideration the physical and operational ability of a source to comply with the applicable standards during start-up or shutdown. Where it is determined that a source is not capable of achieving continuous compliance with an emission standard during start-up or shutdown, SWCAA shall include appropriate emission limitations, operating parameters, or other criteria to regulate performance of the source during start-up or shutdown.

To SWCAA's knowledge, this facility can comply with all applicable standards during startup and shutdown.

<u>Emergency Generator Diesel Engines</u>. Visible emissions from the diesel engine driven generators are limited to 5% opacity or less during normal operation. However, the engine is not capable of reliably limiting visible emissions to less than 5% opacity until the engine achieves normal operating temperature. Therefore, the 5% opacity limit shall not apply to the generator exhaust during start-up periods.

- 11.b. <u>Alternate Operating Scenarios</u>. SWCAA conducted a review of alternate operating scenarios applicable to equipment affected by this permitting action. The permittee did not propose or identify any applicable alternate operating scenarios. Therefore, none were included in the approval conditions.
- 11.c. <u>Pollution Prevention Measures</u>. SWCAA conducted a review of possible pollution prevention measures for the facility. No pollution prevention measures were identified by either the permittee or SWCAA separate or in addition to those measures required under BACT considerations. Therefore, none were included in the approval conditions.

12. EMISSION MONITORING AND TESTING

12.a. <u>Emission Monitoring Requirements – Lochinvar Boiler</u>. The Lochinvar Boiler is required to be tuned annually to verify compliance with the emission limits specified in the ADP. Corrective action is required to be taken if the boiler is found to not be meeting the emission limit.

13. FACILITY HISTORY

13.a. <u>Previous Permitting Actions</u>. SWCAA has previously issued the following permits for BNSF in Vancouver WA.

Date	Application <u>Number</u>	Permit <u>Number</u>	Purpose
03/29/18	CL-2096	18-3276	Authorize existing equipment including boiler engine, heater, material transfer, welding, and abrasive blasting operations.
08/01/19	N/A	N/A	A small unit notification was submitted due to the fact that the Parker boiler was being replaced with the Lochinvar Boiler.
08/06/20	CL-3126	20-3426	The annual throughput for the two diesel tanks was increased from 10,010,000 to 20,000,000 gallons per year.
06/09/21	N/A	N/A	Two small unit notifications were submitted to authorize the installation of two Emergency Generator Diesel Engines.

13.b. <u>Compliance History</u>. A search of source records on file at SWCAA did not identify any previous or outstanding compliance issues over the past five (5) years.

14. PUBLIC INVOLVEMENT OPPORTUNITY

- 14.a. <u>Public Notice for ADP Application CL-3167</u>. Public notice for ADP Application CL-3167 was published on the SWCAA internet website for a minimum of fifteen (15) days beginning on June 17, 2021.
- 14.b. <u>Public/Applicant Comment for ADP Application CL-3167</u>. SWCAA did not receive specific comments, a comment period request, or any other inquiry from the public or the applicant regarding ADP Application CL-3167. Therefore, no public comment period was provided for this permitting action.
- 14.a. <u>State Environmental Policy Act</u>. After review of the SEPA Checklist for this project, SWCAA has determined that the project does not have a probable significant impact on the environment and has issued Determination of Non-Significance 21-020. An Environmental Impact Statement is not required under RCW 43.21C.030(2)(c).